基准时间限制:1 秒 空间限制:131072 KB
一个长度为N的整数序列,编号0 - N - 1。进行Q次查询,查询编号i至j的所有数中,第K大的数是多少。
例如: 1 7 6 3 1。i = 1, j = 3,k = 2,对应的数为7 6 3,第2大的数为6。
Input
第1行:1个数N,表示序列的长度。(2 <= N <= 50000)
第2 - N + 1行:每行1个数,对应序列中的元素。(0 <= S[i] <= 10^9)
第N + 2行:1个数Q,表示查询的数量。(2 <= Q <= 50000)
第N + 3 - N + Q + 2行:每行3个数,对应查询的起始编号i和结束编号j,以及k。(0 <= i <= j <= N - 1,1 <= k <= j - i + 1)
Output
共Q行,对应每一个查询区间中第K大的数。
Input示例
5
1
7
6
3
1
3
0 1 1
1 3 2
3 4 2
Output示例
7
6
1
分析:主席树,不带修改的区间第K大;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, rt<<1
#define Rson mid+1, R, rt<<1|1
const int maxn=1e5+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
int n,m,k,t,sz;
int a[maxn],b[maxn],ls[maxn*],rs[maxn*],s[maxn*],root[maxn];
void insert(int l,int r,int x,int &y,int v)
{
y=++sz;
s[y]=s[x]+;
if(l==r)return;
ls[y]=ls[x],rs[y]=rs[x];
int mid=l+r>>;
if(v<=mid)insert(l,mid,ls[x],ls[y],v);
else insert(mid+,r,rs[x],rs[y],v);
}
int query(int l,int r,int x,int y,int k)
{
if(l==r)return l;
int mid=l+r>>;
if(s[rs[y]]-s[rs[x]]>=k)return query(mid+,r,rs[x],rs[y],k);
else return query(l,mid,ls[x],ls[y],k-(s[rs[y]]-s[rs[x]]));
}
int main()
{
int i,j;
scanf("%d",&n);
rep(i,,n)scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b+n+);
int num=unique(b+,b+n+)-b-;
rep(i,,n)a[i]=lower_bound(b+,b+num+,a[i])-b;
rep(i,,n)insert(,num,root[i-],root[i],a[i]);
scanf("%d",&m);
rep(i,,m)
{
int c,d,e;
scanf("%d%d%d",&c,&d,&e);
c++,d++;
printf("%d\n",b[query(,num,root[c-],root[d],e)]);
}
//system("Pause");
return ;
}