多项式乘法
题意:
求一个最小模数 mod ,使得 n 个数
a
1
,
a
2
,
a
3
,
.
.
.
,
a
n
a_1, a_2, a_3, ...,a_n
a1,a2,a3,...,an 模 mod 都不相等
思路:
a mod m == b mod m <==> m | abs(a - b)
所以求出 n 个数中 两两的差值 , 枚举模数 用筛法思想去判断是否符合要求(不能是任意差值的约数)
用 fft 去快速计算 n 个数两两的所有差值
#include <bits/stdc++.h>
using namespace std;
const int N = 1 << 20;
const double PI = acos(-1);
int n, m;
struct Complex{
double x, y;
Complex operator+ (const Complex& t) const {
return {x + t.x, y + t.y};
}
Complex operator- (const Complex& t) const {
return {x - t.x, y - t.y};
}
Complex operator* (const Complex& t) const {
return {x * t.x - y * t.y, x * t.y + y * t.x};
}
Complex operator* (const double& t) const {
return {x * t, y * t};
}
}A[N], B[N], a[N], b[N], ans[N];
int rev[N], bit, tot;
void fft(Complex a[], int inv) {
for (int i = 0; i < tot; i ++ )
if (i < rev[i])
swap(a[i], a[rev[i]]);
for (int mid = 1; mid < tot; mid <<= 1) {
auto w1 = Complex({cos(PI / mid), inv * sin(PI / mid)});
for (int i = 0; i < tot; i += mid * 2) {
auto wk = Complex({1, 0});
for (int j = 0; j < mid; j ++ , wk = wk * w1) {
auto x = a[i + j], y = wk * a[i + j + mid];
a[i + j] = x + y, a[i + j + mid] = x - y;
}
}
}
}
int P = 500000;
bool st[N];
int main() {
int nn;
scanf("%d", &nn);
for (int i = 0; i < nn; i ++ ) {
int x;
scanf("%d", &x);
a[x].x ++ ;
b[P - x].x ++ ;
}
n = P, m = P;
while((1 << bit) < n + m + 1) bit ++ ;
tot = 1 << bit;
for (int i = 0; i < tot; i ++ )
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
fft(a, 1), fft(b, 1);
for (int i = 0; i < tot; i ++ ) ans[i] = a[i] * b[i];
fft(ans, -1);
for (int i = P + 1; i < tot; i ++ ) {
if (abs((int)(ans[i].x / tot + 0.5))) {
//cout << abs(i - P) << endl;
st[abs(i - P)] = 1;
}
}
int res = nn - 1;
bool flag = 1;
while(flag) {
res ++ ;
flag = 0;
for (int i = res; i <= P; i += res) {
if (st[i]) {
flag = 1;
break;
}
}
}
printf("%d\n", res);
return 0;
}