A graph which is connected and acyclic can be considered a tree. The hight of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤104) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N−1 lines follow, each describes an edge by given the two adjacent nodes' numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print Error: K components
where K
is the number of connected components in the graph.
Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <queue>
#include <string>
#include <set>
#include <map>
using namespace std;
const int maxn = ;
const int inf = ;
int n;
int depth[maxn] = { };
bool vis[maxn] = { false };
struct node {
int id;
int depth;
}nodes[maxn];
vector<int> adj[maxn];
void bfs(int v) {
queue<node> q;
q.push(nodes[v]);
vis[v] = true;
while (!q.empty()) {
node u = q.front();
q.pop();
for (int i = ; i < adj[u.id].size(); i++) {
if (vis[adj[u.id][i]] == false) {
nodes[adj[u.id][i]].depth = u.depth + ;
q.push(nodes[adj[u.id][i]]);
vis[adj[u.id][i]] = true;
if (nodes[adj[u.id][i]].depth > depth[v]) {
depth[v] = nodes[adj[u.id][i]].depth;
}
}
}
}
}
bool bfs_c(int v) {
fill(vis, vis + maxn, false);
queue<int> q;
q.push(v);
vis[v] = true;
int count = ;
while (!q.empty()) {
int u = q.front();
q.pop();
vis[u] = true;
for (int i = ; i <adj[u].size(); i++) {
if (vis[adj[u][i]] == false) {
q.push(adj[u][i]);
count++;
if (count > n)return false;
}
}
}
return true;
}
int bfsTrave() {
fill(vis, vis + maxn, false);
int count = ;
for (int i = ; i <= n; i++) {
if (vis[i] == false) {
bfs(i);
count++;
}
}
return count;
}
int main() {
cin >> n;
for (int i = ; i < n; i++) {
int c1, c2;
cin >> c1 >> c2;
adj[c1].push_back(c2);
adj[c2].push_back(c1);
}
for(int i=;i<=n;i++){
nodes[i].id = i;
nodes[i].depth = ;
}
int k = bfsTrave();
if (k > )printf("Error: %d components", k);
else {
if (!bfs_c())printf("Error: %d components", k);
else {
for (int i = ; i <= n; i++) {
fill(vis, vis + maxn, false);
for (int i = ; i <= n; i++) {
nodes[i].depth = ;
}
bfs(i);
}
int max_d = ;
vector<int> maxi;
for (int i = ; i <= n; i++) {
if (depth[i] > max_d) {
max_d = depth[i];
maxi.clear();
maxi.push_back(i);
}
else if (depth[i] == max_d) {
maxi.push_back(i);
}
}
for (int i = ; i < maxi.size(); i++) {
printf("%d\n", maxi[i]);
}
}
}
system("pause");
}
注意点:考察整个图的遍历以及有环无环图的判断。这里判断有没有环我是通过bfs的加入队列个数超过n来判断的。每个节点遍历一遍,找到最大深度再输出。
ps:看了别人的思路,发现自己想多了,n个节点n-1条边,若只有1个联通块就不会有环,所以那个都是白判断的。
ps2:随便找一个节点dfs找到最深的那些节点,再从那些节点里挑一个dfs找到最深的节点,并集就是所有最深的节点,不需要每个节点都做一次搜索。