redis缓存设计

1:缓存技术和框架的重要性

互联网的一些高并发,高性能的项目和系统中,缓存技术是起着功不可没的作用。缓存不仅仅是key-value的简单存取,它在具体的业务场景中,还是很复杂的,需要很强的架构设计能力。我曾经就遇到过因为缓存架构设计不到位,导致了系统崩溃的案例。

2:缓存的技术方案分类

1)是做实时性比较高的那块数据,比如说库存,销量之类的这种数据,我们采取的实时的缓存+数据库双写的技术方案,双写一致性保障的方案。

2)是做实时性要求不高的数据,比如说商品的基本信息,等等,我们采取的是三级缓存架构的技术方案,就是说由一个专门的数据生产的服务,去获取整个商品详情页需要的各种数据,经过处理后,将数据放入各级缓存中。

3:高并发以及高可用的复杂系统中的缓存架构都有哪些东西

1)在大型的缓存架构中,redis是最最基础的一层。高并发,缓存架构中除了redis,还有其他的组成部分,但是redis至关重要。

  • 如果你的数据量不大(10G以内),单master就可以。redis持久化+备份方案+容灾方案+replication(主从+读写分离)+sentinal(哨兵集群,3个节点,高可用性)

  • 如果你的数据量很大(1T+),采用redis cluster。多master分布式存储数据,水平扩容,自动进行master -> slave的主备切换。

2)最经典的缓存+数据库读写的模式,cache aside pattern。读的时候,先读缓存,缓存没有的话,那么就读数据库。更新缓存分以下两种方式:

  • 数据发生变化时,先更新缓存,然后再更新数据库。这种适用于缓存的值相对简单,和数据库的值一一对应,这样更新比较快。

  • 数据发生变化时,先删除缓存,然后再更新数据库,读数据的时候再设置缓存。这种适用于缓存的值比较复杂的场景。比如可能更新了某个表的一个字段,然后其对应的缓存,是需要查询另外两个表的数据,并进行运算,才能计算出缓存最新的值的。这样更新缓存的代价是很高的。如果你频繁修改一个缓存涉及的多个表,那么这个缓存会被频繁的更新,频繁的更新缓存代价很高。而且这个缓存的值如果不是被频繁访问,就得不偿失了。

大部分情况下,建议适用删除更新的方式。其实删除缓存,而不是更新缓存,就是一个lazy计算的思想,不要每次都重新做复杂的计算,不管它会不会用到,而是让它到需要被使用的时候再重新计算。

举个例子,一个缓存涉及的表的字段,在1分钟内就修改了20次,或者是100次,那么缓存跟新20次,100次; 但是这个缓存在1分钟内就被读取了1次,有大量的冷数据。28黄金法则,20%的数据,占用了80%的访问量。实际上,如果你只是删除缓存的话,那么1分钟内,这个缓存不过就重新计算一次而已,开销大幅度降低。每次数据过来,就只是删除缓存,然后修改数据库,如果这个缓存,在1分钟内只是被访问了1次,那么只有那1次,缓存是要被重新计算的。

3)数据库与缓存双写不一致问题的解决方案

问题:并发请求的时候,数据发生了变更,先删除了缓存,然后要去修改数据库,此时还没修改。另一个请求过来,去读缓存,发现缓存空了,去查询数据库,查到了修改前的旧数据,放到了缓存中。

方案:数据库与缓存更新与读取操作进行异步串行化。(引入队列)

更新数据的时候,将相应操作发送到一个jvm内部的队列中。读取数据的时候,如果发现数据不在缓存中,那么将重新读取数据的操作也发送到同一个jvm内部的队列中。队列消费者串行拿到对应的操作,然后一条一条的执行。这样的话,一个数据变更的操作,先执行删除缓存,然后再去更新数据库,但是还没完成更新。此时如果一个读请求过来,读到了空的缓存,那么可以先将缓存更新的请求发送到队列中,此时会在队列中积压,然后同步等待缓存更新完成。

这里有两个可以优化的点:

  • 一个队列中,其实多个读缓存,更新缓存的请求串在一起是没意义的,而且如果读同一缓存的大量请求到来时,会依次进入队列等待,这样会导致队列最后一个的请求响应时间超时。因此可以做过滤,如果发现队列中已经有一个读缓存,更新缓存的请求了,那么就不用再放个新请求操作进去了,直接等待前面的更新操作请求完成即可。如果请求还在等待时间范围内,不断轮询发现可以取到值了,那么就直接返回; 如果请求等待的时间超过一定时长,那么这一次直接从数据库中读取当前的旧值。

  • 如果请求量特别大的时候,可以用多个队列,每个队列对应一个线程。每个请求来时可以根据请求的标识id进行hash路由进入到不同的队列。

最后,一定要做根据实际业务系统的运行情况,去进行一些压力测试,和模拟线上环境,去看看最繁忙的时候,内存队列可能会挤压多少更新操作,可能会导致最后一个更新操作对应的读请求,会hang多少时间,如果读请求在200ms返回,如果你计算过后,哪怕是最繁忙的时候,积压10个更新操作,最多等待200ms,那还可以的。如果一个内存队列可能积压的更新操作特别多,那么你就要加机器,让每个机器上部署的服务实例处理更少的数据,那么每个内存队列中积压的更新操作就会越少。其实根据之前的项目经验,一般来说数据的写频率是很低的,因此实际上正常来说,在队列中积压的更新操作应该是很少的。

举个例子:一秒就100个写操作。单台机器,20个内存队列,每个内存队列,可能就积压5个写操作,每个写操作性能测试后,一般在20ms左右就完成,那么针对每个内存队列中的数据的读请求,也就最多hang一会儿,200ms以内肯定能返回了。如果把写QPS扩大10倍,但是经过刚才的测算,就知道,单机支撑写QPS几百没问题,那么就扩容机器,扩容10倍的机器,10台机器,每个机器20个队列,200个队列。大部分的情况下,应该是这样的,大量的读请求过来,都是直接走缓存取到数据的,少量情况下,可能遇到读跟数据更新冲突的情况,如上所述,那么此时更新操作如果先入队列,之后可能会瞬间来了对这个数据大量的读请求,但是因为做了去重的优化,所以也就一个更新缓存的操作跟在它后面。

4)大型缓存全量更新问题的解决方案

问题:缓存数据很大时,可能导致redis的吞吐量就会急剧下降,网络耗费的资源大。如果不维度化,就导致多个维度的数据混合在一个缓存value中。而且不同维度的数据,可能更新的频率都大不一样。拿商品详情页来说,如果现在只是将1000个商品的分类批量调整了一下,但是如果商品分类的数据和商品本身的数据混杂在一起。那么可能导致需要将包括商品在内的大缓存value取出来,进行更新,再写回去,就会很坑爹,耗费大量的资源,redis压力也很大

方案:缓存维度化。举个例子:商品详情页分三个维度:商品维度,商品分类维度,商品店铺维度。将每个维度的数据都存一份,比如说商品维度的数据存一份,商品分类的数据存一份,商品店铺的数据存一份。那么在不同的维度数据更新的时候,只要去更新对应的维度就可以了。大大减轻了redis的压力。

5)通过多级缓存,达到高并发极致,同时给缓存架构最后的安全保护层。具体可以参照上一篇文章【亿级流量的商品详情页架构分析】。

6)分布式并发缓存重建的冲突问题的解决方案

问题:假如数据在所有的缓存中都不存在了(LRU算法弄掉了),就需要重新查询数据写入缓存。对于分布式的重建缓存,在不同的机器上,不同的服务实例中,去做上面的事情,就会出现多个机器分布式重建去读取相同的数据,然后写入缓存中。

方案:分布式锁:如果你有多个机器在访问同一个共享资源,那么这个时候,如果你需要加个锁,让多个分布式的机器在访问共享资源的时候串行起来。分布式锁当然有很多种不同的实现方案,redis分布式锁,zookeeper分布式锁。

zookeeper分布式锁的解决并发冲突的方案

  • (1)变更缓存重建以及空缓存请求重建,更新redis之前,都需要先获取对应商品id的分布式锁

  • (2)拿到分布式锁之后,需要根据时间版本去比较一下,如果自己的版本新于redis中的版本,那么就更新,否则就不更新

  • (3)如果拿不到分布式锁,那么就等待,不断轮询等待,直到自己获取到分布式的锁

7)缓存冷启动的问题的解决方案

问题:新系统第一次上线,此时在缓存里可能是没有数据的。或者redis缓存全盘崩溃了,数据也丢了。导致所有请求打到了mysql。导致mysql直接挂掉。

方案:缓存预热。

  • 提前给redis中灌入部分数据,再提供服务

  • 肯定不可能将所有数据都写入redis,因为数据量太大了,第一耗费的时间太长了,第二根本redis容纳不下所有的数据,需要根据当天的具体访问情况,实时统计出访问频率较高的热数据,然后将访问频率较高的热数据写入redis中,肯定是热数据也比较多,我们也得多个服务并行读取数据去写,并行的分布式的缓存预热。

8)恐怖的缓存雪崩问题的解决方案

问题:缓存服务大量的资源全部耗费在访问redis和源服务无果,最后自己被拖死,无法提供服务。

方案:相对来说,考虑的比较完善的一套方案,分为事前,事中,事后三个层次去思考怎么来应对缓存雪崩的场景。

  • 事前:高可用架构。主从架构,操作主节点,读写,数据同步到从节点,一旦主节点挂掉,从节点跟上。

  • 事中:多级缓存。redis cluster已经彻底崩溃了,缓存服务实例的ehcache的缓存还能起到作用。

  • 事后:redis数据可以恢复,做了备份,redis数据备份和恢复,redis重新启动起来。

9)缓存穿透问题的解决方案

问题:缓存中没有这样的数据,数据库中也没有这样的数据。由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞。

方案:有很多种方法可以有效地解决缓存穿透问题,最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被 这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。另外也有一个更为简单粗暴的方法(我们采用的就是这种),如果一个查询返回的数据为空(不管是数 据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。

上一篇:tar.gz和tar.bz2


下一篇:Python 基于python+mysql浅谈redis缓存设计与数据库关联数据处理