Mr. Kitayuta has just bought an undirected graph consisting of n vertices and m edges. The vertices of the graph are numbered from 1 to n. Each edge, namely edge i, has a color ci, connecting vertex ai and bi.
Mr. Kitayuta wants you to process the following q queries.
In the i-th query, he gives you two integers — ui and vi.
Find the number of the colors that satisfy the following condition: the edges of that color connect vertex ui and vertex vi directly or indirectly.
InputThe first line of the input contains space-separated two integers — n and m (2 ≤ n ≤ 100, 1 ≤ m ≤ 100), denoting the number of the vertices and the number of the edges, respectively.
The next m lines contain space-separated three integers — ai, bi (1 ≤ ai < bi ≤ n) and ci (1 ≤ ci ≤ m). Note that there can be multiple edges between two vertices. However, there are no multiple edges of the same color between two vertices, that is, if i ≠ j, (ai, bi, ci) ≠ (aj, bj, cj).
The next line contains a integer — q (1 ≤ q ≤ 100), denoting the number of the queries.
Then follows q lines, containing space-separated two integers — ui and vi (1 ≤ ui, vi ≤ n). It is guaranteed that ui ≠ vi.
OutputFor each query, print the answer in a separate line.
Examples input Copy4 5output Copy
1 2 1
1 2 2
2 3 1
2 3 3
2 4 3
3
1 2
3 4
1 4
2input Copy
1
0
5 7output Copy
1 5 1
2 5 1
3 5 1
4 5 1
1 2 2
2 3 2
3 4 2
5
1 5
5 1
2 5
1 5
1 4
1Note
1
1
1
2
Let's consider the first sample.
- Vertex 1 and vertex 2 are connected by color 1 and 2.
- Vertex 3 and vertex 4 are connected by color 3.
- Vertex 1 and vertex 4 are not connected by any single color.
题意:
给一张图两个结点之间的边有颜色,有q次询问,询问x,y两点直接或间接通过同一个颜色相连的路径有几条。
分析:
学了二维并查集,算是一种新思想吧,第二维表示颜色。
/// author:Kissheart /// #include<stdio.h> #include<algorithm> #include<iostream> #include<string.h> #include<vector> #include<stdlib.h> #include<math.h> #include<queue> #include<deque> #include<ctype.h> #include<map> #include<set> #include<stack> #include<string> #define INF 0x3f3f3f3f #define FAST_IO ios::sync_with_stdio(false) const double PI = acos(-1.0); const double eps = 1e-6; const int MAX=1e6+10; const int mod=1e9+7; typedef long long ll; using namespace std; #define gcd(a,b) __gcd(a,b) inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;} inline ll qpow(ll a,ll b){ll r=1,t=a; while(b){if(b&1)r=(r*t)%mod;b>>=1;t=(t*t)%mod;}return r;} inline ll inv1(ll b){return qpow(b,mod-2);} inline ll exgcd(ll a,ll b,ll &x,ll &y){if(!b){x=1;y=0;return a;}ll r=exgcd(b,a%b,y,x);y-=(a/b)*x;return r;} inline ll read(){ll x=0,f=1;char c=getchar();for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;for(;isdigit(c);c=getchar()) x=x*10+c-'0';return x*f;} //freopen( "in.txt" , "r" , stdin ); //freopen( "data.txt" , "w" , stdout ); int n,m; int pre[105][105]; int Find(int x,int y) { return pre[x][y]==x?x:pre[x][y]=Find(pre[x][y],y); } int main() { for(int i=1;i<105;i++) for(int j=1;j<105;j++) pre[i][j]=i; scanf("%d%d",&n,&m); for(int i=1;i<=m;i++) { int x,y,z; scanf("%d%d%d",&x,&y,&z); int fx=Find(x,z); int fy=Find(y,z); if(fx!=fy) pre[fx][z]=pre[fy][z]; } int q; scanf("%d",&q); while(q--) { int x,y; int sum=0; scanf("%d%d",&x,&y); for(int i=1;i<=m;i++) if(Find(x,i)==Find(y,i)) sum++; printf("%d\n",sum); } return 0; }View Code