You are given a tree consisting exactly of n vertices. Tree is a connected undirected graph with n−1 edges. Each vertex v of this tree has a value av assigned to it.
Let dist(x,y) be the distance between the vertices x and y. The distance between the vertices is the number of edges on the simple path between them.
Let’s define the cost of the tree as the following value: firstly, let’s fix some vertex of the tree. Let it be v. Then the cost of the tree is ∑i=1ndist(i,v)⋅ai.
Your task is to calculate the maximum possible cost of the tree if you can choose v arbitrarily.
Input
The first line contains one integer n, the number of vertices in the tree (1≤n≤2⋅105).
The second line of the input contains n integers a1,a2,…,an (1≤ai≤2⋅105), where ai is the value of the vertex i.
Each of the next n−1 lines describes an edge of the tree. Edge i is denoted by two integers ui and vi, the labels of vertices it connects (1≤ui,vi≤n, ui≠vi).
It is guaranteed that the given edges form a tree.
Output
Print one integer — the maximum possible cost of the tree if you can choose any vertex as v.
Examples
Input
8
9 4 1 7 10 1 6 5
1 2
2 3
1 4
1 5
5 6
5 7
5 8
Output
121
Input
1
1337
Output
0
Note
Picture corresponding to the first example:
You can choose the vertex 3 as a root, then the answer will be 2⋅9+1⋅4+0⋅1+3⋅7+3⋅10+4⋅1+4⋅6+4⋅5=18+4+0+21+30+4+24+20=121.
In the second example tree consists only of one vertex so the answer is always 0.
放一个跟别人思路一样,过程稍有不同的代码。
具体是转移方程不好想,求出其中一个点为根的权值,向其子节点转移,
公式:dp[next]
=dp[now]-要转移的方向子树权值和+剩下子树权值和
=dp[now]-要转移的方向子树权值和+(all-要转移的方向子树权值和)
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <queue>
#include <vector>
#include <map>
#include <string>
using namespace std;
//for(i=1;i<n;i++)
//scanf("%d",&n);
//printf("\n",);
long long dp[300010],money[300010],temp[300010],ans,all;
vector<int>mapp[300010];
int dfs(int point,int step,int now)
{
dp[1]+=now*money[point];
temp[point]=money[point];
for(int i=0;i<mapp[point].size();i++)
{
if(step==mapp[point][i])
continue;
dfs(mapp[point][i],point,now+1);
temp[point]+=temp[mapp[point][i]];
}
if(mapp[point].size()==1)
temp[point]=money[point];
return 0;
}
int ddffss(int point,int step)
{
ans=max(ans,dp[point]);
for(int i=0;i<mapp[point].size();i++)
{
if(step==mapp[point][i])
continue;
dp[mapp[point][i]]=dp[point]-temp[mapp[point][i]]*2+all;
ddffss(mapp[point][i],point);
}
return 0;
}
int main()
{
int i,j,l,a,b,k;
all=0;
scanf("%d",&a);
for(i=1;i<=a;i++)
{
scanf("%lld",&money[i]);
all+=money[i];
}
for(i=1;i<a;i++)
{
scanf("%d%d",&j,&k);
mapp[j].push_back(k);
mapp[k].push_back(j);
}
dfs(1,-1,0);
ans=dp[1];
ddffss(1,-1);
printf("%lld",ans);
return 0;
}