BZOJ 3884 欧拉定理 无穷幂取模

详见PoPoQQQ的博客..

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define LL long long
using namespace std;
LL KASE,p;
inline LL Get_Phi(LL x)
{
LL Ret=x;
for (LL i=;i*i<=x;i++)
if (x%i==)
{
Ret/=i;Ret*=(i-);
while (x%i==) x/=i;
}
if (x>) Ret/=x,Ret*=(x-);
return Ret;
}
inline LL Pow(LL Base,LL Exp,LL Mod)
{
LL Ret=;
while (Exp)
{
if (Exp&) Ret=(Ret*Base)%Mod;
Exp>>=; Base=(Base*Base)%Mod;
}
return Ret;
}
LL Solve(LL p)
{
if (p==) return ;
LL Exp=;
while (!(p&)) p>>=,Exp++;
LL Phi=Get_Phi(p);
LL Tmp=Solve(Phi);
(Tmp+=Phi-Exp%Phi)%=Phi;
Tmp=Pow(,Tmp,p)%p;
return Tmp<<Exp; }
int main()
{
scanf("%lld",&KASE);
for (LL Kase=;Kase<=KASE;Kase++)
{
scanf("%lld",&p);
printf("%lld\n",Solve(p));
}
return ;
}

C++

上一篇:css sticker footer


下一篇:【解题报告】[动态规划] RQNOJ - PID105 / 核电站问题