题意: 给定一张有向图。找出全部强连通分量,并输出。
思路:有向图的强连通分量用Tarjan算法,然后用map映射,便于输出,注意输出格式。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <algorithm> using namespace std; const int MAXN = 2000;
const int MAXM = 50000; struct Edge{
int to, next;
}edge[MAXM]; int head[MAXN], tot;
int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN];
int Index, top;
int scc;
bool Instack[MAXN];
int num[MAXN];
int n, m, cnt;
map<string, int> sTon;
map<int, string> nTos; void init() {
tot = cnt = 0;
memset(head, -1, sizeof(head));
sTon.clear();
nTos.clear();
} void addedge(int u, int v) {
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} void Tarjan(int u) {
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for (int i = head[u]; i != -1; i = edge[i].next) {
v = edge[i].to;
if (!DFN[v]) {
Tarjan(v);
if (Low[u] > Low[v]) Low[u] = Low[v]; }
else if (Instack[v] && Low[u] > DFN[v])
Low[u] = DFN[v];
}
if (Low[u] == DFN[u]) {
scc++;
do {
v = Stack[--top];
Instack[v] = false;
Belong[v] = scc;
num[scc]++;
} while (v != u);
}
} void solve() {
memset(Low, 0, sizeof(Low));
memset(DFN, 0, sizeof(DFN));
memset(num, 0, sizeof(num));
memset(Belong, 0, sizeof(Belong));
memset(Stack, 0, sizeof(Stack));
memset(Instack, false, sizeof(Instack));
Index = scc = top = 0;
for (int i = 1; i <= n; i++)
if (!DFN[i])
Tarjan(i);
} int main() {
int t = 0;
while (scanf("%d%d", &n, &m)) {
if (n == 0 && m == 0) break;
init();
string s1, s2;
for (int i = 0; i < m; i++) {
cin >> s1 >> s2;
if (sTon.find(s1) == sTon.end()) {
cnt++;
sTon[s1] = cnt;
nTos[cnt] = s1;
}
if (sTon.find(s2) == sTon.end()) {
cnt++;
sTon[s2] = cnt;
nTos[cnt] = s2;
}
addedge(sTon[s1], sTon[s2]);
} if (t) printf("\n");
printf("Calling circles for data set %d:\n", ++t);
solve();
for (int i = 1; i <= scc; i++) {
int flag = 0;
for (int u = 1; u <= n; u++) {
if (Belong[u] == i) {
if (!flag) {
cout << nTos[u];
flag = 1;
}
else cout << ", " << nTos[u];
}
}
printf("\n");
}
}
return 0;
}