秦曾昌人工智能课程---6、Decision Tree Learning
一、总结
一句话总结:
怎样去构建决策树:比如一维:***|00|***|000|***,|为分割线,每个分割点都是一种情况,选一个分割点,然后再选下一个分割点,即可构成二叉树
决策树是机器学习中最简单的算法
1、机器学习的决策树算法中怎么构建决策树?
熵越小信息越有序:把不相干的点划分开,比如***00|***000***,|为分割线
一维表现:***|00|***|000|***,|为分割线,每个分割点都是一种情况,选一个分割点,然后再选下一个分割点,即可构成二叉树
2、多维向量如何化为决策树(比如outlook几种,temperature几种,humidity几种,wind几种)?
条件做分支:如果以outlook为根,如果outlook是sunny怎样,比如判断湿度,如果outlook是rain怎么样,比如判断温度
叶子节点做结果:以叶子节点来做结果,比如yes啊,no啊,表示是否会去做某事
3、如何比较两个信息量的大小,比如(H(x1)=你妈妈打电话让你穿秋裤;H(x2)=你辅导员打电话告诉你得了什么奖学金) ?
概率相关:H(x)=1/P(x):可能和事情发生的概率相关:H(x2)的概率要低
4、信息量的特点是什么,比如(H(x1)=你妈妈打电话让你穿秋裤;H(x2)=你辅导员打电话告诉你得了什么奖学金) ?
1、概率相关:H(x)=1/P(x):可能和事情发生的概率相关:H(x2)的概率要低
2、大于等于0:H(x1)>=0:比如你妈妈给你打了一个电话,你最多觉得这件事没有信息,但是你的信息没有反馈回去给你妈妈
3、相加性:H(x1,x2)=H(x1)+H(x2)
5、两件事情的信息量和每件事情信息量之间的关系是什么(H(x1)=你妈妈打电话让你穿秋裤;H(x2)=你辅导员打电话告诉你得了什么奖学金)?
相加性:H(x1,x2)=H(x1)+H(x2)
6、满足信息量三个条件的函数可以是什么?
|||-begin
1、概率相关:H(x)=1/P(x):可能和事情发生的概率相关:H(x2)的概率要低
2、大于等于0:H(x1)>=0:比如你妈妈给你打了一个电话,你最多觉得这件事没有信息,但是你的信息没有反馈回去给你妈妈
3、相加性:H(x1,x2)=H(x1)+H(x2)
|||-end