38 协程 greenlet模块实现并发 Gevent

异步回调

### 什么是异步回调

异步回调指的是:在发起一个异步任务的同时指定一个函数,在异步任务完成时会自动的调用这个函数

### 为什么需要异步回调

之前在使用线程池或进程池提交任务时,如果想要处理任务的执行结果则必须调用result函数或是shutdown函数,而它们都是是阻塞的,会等到任务执行完毕后才能继续执行,这样一来在这个等待过程中就无法执行其他任务,降低了效率,所以需要一种方案,即保证解析结果的线程不用等待,又能保证数据能够及时被解析,该方案就是异步回调

### 异步回调的使用

先来看一个案例:

在编写爬虫程序时,通常都是两个步骤:

​ 1.从服务器下载一个网页文件

​ 2.读取并且解析文件内容,提取有用的数据

按照以上流程可以编写一个简单的爬虫程序

要请求网页数据则需要使用到第三方的请求库requests可以通过pip或是pycharm来安装,在pycharm中点击settings->解释器->点击+号->搜索requests->安装

```python
import requests,re,os,random,time
from concurrent.futures import ProcessPoolExecutor

def get_data(url):
print("%s 正在请求%s" % (os.getpid(),url))
time.sleep(random.randint(1,2))
response = requests.get(url)
print(os.getpid(),"请求成功 数据长度",len(response.content))
#parser(response) # 3.直接调用解析方法 哪个进程请求完成就那个进程解析数据 强行使两个操作耦合到一起了
return response

def parser(obj):
data = obj.result()
htm = data.content.decode("utf-8")
ls = re.findall("href=.*?com",htm)
print(os.getpid(),"解析成功",len(ls),"个链接")

if __name__ == '__main__':
pool = ProcessPoolExecutor(3)
urls = ["https://www.baidu.com",
"https://www.sina.com",
"https://www.python.org",
"https://www.tmall.com",
"https://www.mysql.com",
"https://www.apple.com.cn"]
# objs = []
for url in urls:
# res = pool.submit(get_data,url).result() # 1.同步的方式获取结果 将导致所有请求任务不能并发
# parser(res)

obj = pool.submit(get_data,url) #
obj.add_done_callback(parser) # 4.使用异步回调,保证了数据可以被及时处理,并且请求和解析解开了耦合
# objs.append(obj)

# pool.shutdown() # 2.等待所有任务执行结束在统一的解析
# for obj in objs:
# res = obj.result()
# parser(res)
# 1.请求任务可以并发 但是结果不能被及时解析 必须等所有请求完成才能解析
# 2.解析任务变成了串行,
```

总结:异步回调使用方法就是在提交任务后得到一个Futures对象,调用对象的add_done_callback来指定一个回调函数,

如果把任务比喻为烧水,没有回调时就只能守着水壶等待水开,有了回调相当于换了一个会响的水壶,烧水期间可用作其他的事情,等待水开了水壶会自动发出声音,这时候再回来处理。水壶自动发出声音就是回调。

注意:

1. 使用进程池时,回调函数都是主进程中执行执行
2. 使用线程池时,回调函数的执行线程是不确定的,哪个线程空闲就交给哪个线程
3. 回调函数默认接收一个参数就是这个任务对象自己,再通过对象的result函数来获取任务的处理结果

 线程队列

1.Queue 先进先出队列

与多进程中的Queue使用方式完全相同,区别仅仅是不能被多进程共享。

```python
q = Queue(3)
q.put(1)
q.put(2)
q.put(3)
print(q.get(timeout=1))
print(q.get(timeout=1))
print(q.get(timeout=1))
```

 

2.LifoQueue 后进先出队列

该队列可以模拟堆栈,实现先进后出,后进先出

```python
lq = LifoQueue()

lq.put(1)
lq.put(2)
lq.put(3)

print(lq.get())
print(lq.get())
print(lq.get())
```

 

3.PriorityQueue 优先级队列

该队列可以为每个元素指定一个优先级,这个优先级可以是数字,字符串或其他类型,但是必须是可以比较大小的类型,取出数据时会按照从小到大的顺序取出

```python
pq = PriorityQueue()
# 数字优先级
pq.put((10,"a"))
pq.put((11,"a"))
pq.put((-11111,"a"))

print(pq.get())
print(pq.get())
print(pq.get())
# 字符串优先级
pq.put(("b","a"))
pq.put(("c","a"))
pq.put(("a","a"))

print(pq.get())
print(pq.get())
print(pq.get())
```

.线程事件Event

### 什么是事件

事件表示在某个时间发生了某个事情的通知信号,用于线程间协同工作。

因为不同线程之间是独立运行的状态不可预测,所以一个线程与另一个线程间的数据是不同步的,当一个线程需要利用另一个线程的状态来确定自己的下一步操作时,就必须保持线程间数据的同步,Event就可以实现线程间同步

### Event介绍

Event象包含一个可由线程设置的信号标志,它允许线程等待某些事件的发生。在 初始情况下,Event对象中的信号标志被设置为假。如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行

可用方法:

```python
event.isSet():返回event的状态值;
event.wait():将阻塞线程;知道event的状态为True
event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;
event.clear():恢复event的状态值为False。
```

使用案例:

```python
# 在链接mysql服务器前必须保证mysql已经启动,而启动需要花费一些时间,所以客户端不能立即发起链接 需要等待msyql启动完成后立即发起链接
from threading import Event,Thread
import time

boot = False
def start():
global boot
print("正正在启动服务器.....")
time.sleep(5)
print("服务器启动完成!")
boot = True

def connect():
while True:
if boot:
print("链接成功")
break
else:
print("链接失败")
time.sleep(1)

Thread(target=start).start()
Thread(target=connect).start()
Thread(target=connect).start()
```

使用Event改造后:

```python
from threading import Event,Thread
import time

e = Event()
def start():
global boot
print("正正在启动服务器.....")
time.sleep(3)
print("服务器启动完成!")
e.set()

def connect():
e.wait()
print("链接成功")

Thread(target=start).start()
Thread(target=connect).start()
Thread(target=connect).start()
```

增加需求,每次尝试链接等待1秒,尝试次数为3次

```python
from threading import Event,Thread
import time

e = Event()
def start():
global boot
print("正正在启动服务器.....")
time.sleep(5)
print("服务器启动完成!")
e.set()

def connect():
for i in range(1,4):
print("第%s次尝试链接" % i)
e.wait(1)
if e.isSet():
print("链接成功")
break
else:
print("第%s次链接失败" % i)
else:
print("服务器未启动!")

Thread(target=start).start()
Thread(target=connect).start()
# Thread(target=connect).start()
```





单线程实现并发
并发:指的是多个任务同时发生,看起来好像是同时都在进行

并行:指的是多个任务真正的同时进行

如果一个线程能够检测IO操作并且将其设置为非阻塞,并自动切换到其他任务就可以提高CPU的利用率,指的就是在单线程下实现并发。
并发 = 切换任务+保存状态,只要找到一种方案,能够在两个任务之间切换执行并且保存状态,那就可以实现单线程并发
python中的生成器就具备这样一个特点,每次调用next都会回到生成器函数中执行代码,这意味着任务之间可以切换,并且是基于上一次运行的结果,这意味着生成器会自动保存执行状态!
利用生成器来实现并发执行:
def task1():
while True:
yield
print("task1 run")

def task2():
g = task1()
while True:
next(g)
print("task2 run")
task2()
 两个计算任务一个采用生成器切换并发执行  一个直接串行调用
import time
def task1():
a = 0
for i in range(10000000):
a += i
yield

def task2():
g = task1()
b = 0
for i in range(10000000):
b += 1
next(g)
s = time.time()
task2()
print("并发执行时间",time.time()-s)

# 单线程下串行执行两个计算任务 效率反而比并发高 因为并发需要切换和保存
def task1():
a = 0
for i in range(10000000):
a += i
def task2():
b = 0
for i in range(10000000):
b += 1
s = time.time()
task1()
task2()
print("串行执行时间",time.time()-s)
```
可以看到对于纯计算任务而言,单线程并发反而使执行效率下降了一半左右,所以这样的方案对于纯计算任务而言是没有必要的

 

协程

协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。

协程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案:

1.可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。

2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换

优点如下:

1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
2. 单线程内就可以实现并发的效果,最大限度地利用cpu

缺点如下:

1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

总结协程特点:

  1. 必须在只有一个单线程里实现并发
  2. 修改共享数据不需加锁
  3. 用户程序里自己保存多个控制流的上下文栈
  4. 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))

可以看到对于纯计算任务而言,单线程并发反而使执行效率下降了一半左右,所以这样的方案对于纯计算任务而言是没有必要的
greenlet模块实现并发

```python
def task1(name):
print("%s task1 run1" % name)
g2.switch(name) # 切换至任务2
print("task1 run2")
g2.switch() # 切换至任务2

def task2(name):
print("%s task2 run1" % name)
g1.switch() # 切换至任务1
print("task2 run2")

g1 = greenlet.greenlet(task1)
g2 = greenlet.greenlet(task2)
g1.switch("jerry") # 为任务传参数
```

现在我们需要一种方案 即可检测IO 又能够实现单线程并发,于是gevent闪亮登场
Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。
#用法
g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的

g2=gevent.spawn(func2)

g1.join() #等待g1结束

g2.join() #等待g2结束

#或者上述两步合作一步:gevent.joinall([g1,g2])

g1.value#拿到func1的返回值
遇到IO阻塞时会自动切换任务
# gevent 不具备检测IO的能力  需要为它打补丁  打上补丁之后就能检测IO
# 注意补丁一定打在最上面 必须保证导入模块前就打好补丁
from gevent import monkey
monkey.patch_all()

from threading import current_thread
import gevent,time


def task1():
print(current_thread(),1)
print("task1 run")
# gevent.sleep(3)
time.sleep(3)
print("task1 over")

def task2():
print(current_thread(),2)
print("task2 run")
print("task2 over")

# spawn 用于创建一个协程任务
g1 = gevent.spawn(task1)
g2 = gevent.spawn(task2)

# 任务要执行,必须保证主线程没挂 因为所有协程任务都是主线在执行 ,必须调用join来等待协程任务
# g1.join()
# g2.join()
# 理论上等待执行时间最长的任务就行 , 但是不清楚谁的时间长 可以全部join

gevent.joinall([g1,g2])
print("over")

gevent.sleep(3)模拟的是gevent可以识别的io阻塞,

而time.sleep(3)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了

from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前

 

 

上一篇:pyhon-高并发测试


下一篇:python-48-协程