题意:给出一个无向图,求割点以及去除这个点后图分为几部分;
思路:割点定义:去掉该点后图将分成几个部分。割点:(1)当k为根节点且有>1个分支,则去除该点后图便被分成几个分支。(2)DFN[v]<Low[j]表示v的子节点不会有回路回到v的祖先。
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define MAXN 1005
#define MAXM 1005*1005
struct Edge
{
int to,next;
}edge[MAXM];
int Low[MAXN],DFN[MAXN],first[MAXN],son,vis[MAXN];
int n,count,cut[MAXN],tot,root;
void addedge(int v,int w)
{
edge[tot].to=w;
edge[tot].next=first[v];
first[v]=tot++;
}
void Tarjan(int v)
{
DFN[v]=Low[v]=++count;
for(int i=first[v];i!=-1;i=edge[i].next)
{
int j=edge[i].to;
if(!DFN[j])
{
Tarjan(j);
if(root==v)
{
son++;
if(son>1)
cut[v]=1;
}
else
{
Low[v]=min(Low[j],Low[v]);
if(DFN[v]<=Low[j])cut[v]=1;
}
}
else
{
Low[v]=min(Low[v],DFN[j]);
}
}
}
void dfs(int u)
{
vis[u]=1;
for(int i=first[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(!vis[v])
{
dfs(v);
}
}
}
int main()
{
int x,y,t=0;
while(scanf("%d",&x),x)
{
t++;
memset(DFN,0,sizeof(DFN));
memset(first,-1,sizeof(first));
memset(Low,0,sizeof(Low));
memset(cut,0,sizeof(cut));
n=0;
scanf("%d",&y);
addedge(x,y);
addedge(y,x);
n=max(x,y);
count=0;
while(scanf("%d",&x),x)
{
scanf("%d",&y);
addedge(x,y);
addedge(y,x);
n=max(x,y);
} son=0;
root=1;
Tarjan(1);
printf("Network #%d\n",t);//cout<<1111<<endl;
int ans=0;
int flag=0;
for(int i=1;i<=n;i++)
{
if(cut[i]==1)
{
flag=1;
memset(vis,0,sizeof(vis));
vis[i]=1;
int son1=0;
for(int j=first[i];j!=-1;j=edge[j].next)
{
int k=edge[j].to;
if(!vis[k])
{
dfs(k);
son1++;
}
}
printf(" SPF node %d leaves %d subnets\n",i,son1);
}
} if(!flag)
printf(" No SPF nodes\n");
printf("\n");
}
return 0;
}