设 \(p(x)\) 为 \(x\) 的所有素因子乘积。
询问 \(x\) 的结果等于询问 \(p(x)\) 的结果,因此只需要询问没有平方因子的数即可。这可以在给定的 \(\lceil 0.65n \rceil\) 次询问内完成。
考虑交互器怎么回答询问:
令(以下求和在 XOR 意义,即 \(\bmod 2\) 的向量下进行)
- \(g(x) = [x \in S]x\)
- \(h(x) = [f(x)=x][x \in S]\sum_{p(i)=x} g(x)\) (即将贡献在 \(p(i)\) 处统计)
因为求和是在 XOR 意义下进行的,且 \(n\) 无重因子(\(\mu \ne 0\)),所以 \(\mu(d) \equiv 1\),相当于先做(高维)后缀和再做(高维)前缀和。
考虑根据询问的结果,还原出 \(h(x)\)。直接先做(高维)前缀差分再做(高维)后缀差分即可。
接着我们需要还原一组恰好 \(c\) 个元素的答案。
我们知道一组元素的 XOR 值,所以对每个值是否在集合中设变量,对 \(\log n\) 位的值列方程(在 \(\bmod 2\) 意义下),用 Gauss 消元解出一组解。
一个 \(h(x)\) 等价类的大小最大可以达到 \(260\) 左右,解不一定是唯一的(当然这种情况很少出现),这时可以随机解出两组解,并使用压位背包找到可以符合个数限制的解。因为数据随机生成,类似于 \(n = 0\) 的极端情况是几乎不可能出现的,且解出的两组解一般差距不大,这样的随机方法在实践中可以很快找到一组答案。
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#include <numeric>
#include <vector>
#include <cassert>
#include <bitset>
#include <random>
#include <chrono>
#include <unistd.h>
using namespace std;
#define LOG(f...) fprintf(stderr, f)
#define DBG(f...) printf("%3d: ", __LINE__), printf(f)
// #define DBG(f...) void()
#define all(cont) begin(cont), end(cont)
#ifdef __linux__
#define getchar getchar_unlocked
#define putchar putchar_unlocked
#endif
using ll = long long;
template <class T> void read(T &x) {
char ch; x = 0;
int f = 1;
while (isspace(ch = getchar()));
if (ch == '-') ch = getchar(), f = -1;
do x = x * 10 + (ch - '0'); while(isdigit(ch = getchar()));
x *= f;
}
template <class T, class ...A> void read(T &x, A&... args) { read(x); read(args...); }
const int N = 1000005;
const int SIZE = 270;
const int MAX_LEN = 40005;
using v2 = bitset<SIZE>;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
bool np[1005];
int p[170], pc = 0;
void sieve(int n) {
for (int i = 2; i <= n; ++i) {
if (!np[i]) {
p[pc++] = i;
for (int j = i * 2; j <= n; j += i)
np[j] = true;
}
}
}
vector<int> s[N];
int xs[N];
int len;
int n, c;
vector<int> P;
bitset<MAX_LEN> avail, aug;
int pre[MAX_LEN];
v2 e[20], _t[20];
vector<int> s1[MAX_LEN], s2[MAX_LEN];
bool type[MAX_LEN];
pair<v2, bool> eliminate(int n) {
v2 sol;
static int var[20];
bool is_uniq = true;
memset(var, -1, sizeof(var));
for (int i = 0, j = 0; j < n && i < len; ++j) {
int l = -1;
for (int k = i; k < len; ++k)
if (e[k].test(j)) { l = k; break; }
if (l == -1) { is_uniq = false; sol.set(j, rng() & 1); continue; }
if (l != i) swap(e[l], e[i]);
var[i] = j;
for (int k = i + 1; k < len; ++k)
if (e[k].test(j)) e[k] ^= e[i];
++i;
}
for (int i = len - 1; i >= 0; --i)
if (~var[i]) sol.set(var[i], ((sol & e[i]).count() & 1) ^ e[i].test(n));
return {sol, is_uniq};
}
int cnt = 0;
bool solve() {
int sum = 0;
vector<int> uni_s;
memset(type, 0, sizeof(type));
avail.reset();
avail.set(0);
int cnt = 0;
for (int p : P) {
int n = s[p].size();
if (n == 1) {
if (xs[p]) {
++sum;
uni_s.push_back(p);
}
continue;
}
for (int b = 0; b < len; ++b) {
for (int i = 0; i < n; ++i)
e[b].set(i, (s[p][i] >> b) & 1);
e[b].set(n, (xs[p] >> b) & 1);
_t[b] = e[b];
}
auto [sol, uniq] = eliminate(n);
if (uniq) {
for (int i = 0; i < n; ++i)
if (sol.test(i))
++sum, uni_s.push_back(s[p][i]);
}
else {
auto to_vec = [&](const v2 &v) -> vector<int> {
vector<int> r;
for (int i = 0; i < n; ++i)
if (v.test(i)) r.push_back(s[p][i]);
return r;
};
s1[cnt] = to_vec(sol);
copy_n(_t, len, e);
s2[cnt] = to_vec(eliminate(n).first);
if (s1[cnt].size() > s2[cnt].size()) swap(s1[cnt], s2[cnt]);
sum += s1[cnt].size();
if (s1[cnt].size() == s2[cnt].size()) {
uni_s.insert(uni_s.end(), all(s1[cnt]));
continue;
}
aug = (avail << (s2[cnt].size() - s1[cnt].size())) & ~avail;
for (int i = aug._Find_first(); i != (int)aug.size(); i = aug._Find_next(i))
pre[i] = cnt;
avail |= aug;
++cnt;
}
}
if (c < sum || !avail.test(c - sum)) return false;
vector<int> res = move(uni_s);
for (int i = c - sum; i; i -= s2[pre[i]].size() - s1[pre[i]].size()) {
type[pre[i]] = true;
res.insert(res.end(), all(s2[pre[i]]));
}
for (int i = 0; i < cnt; ++i)
if (!type[i])
res.insert(res.end(), all(s1[i]));
for (int x : res)
printf("%d ", x);
putchar('\n');
return true;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
sieve(1000);
read(n, c);
len = __lg(n) + 1;
for (int i = 1; i <= n; ++i) {
int r = 1;
int num = i;
for (int j = 0; j < pc; ++j) {
if (num % p[j] == 0) {
r *= p[j];
do num /= p[j]; while (num % p[j] == 0);
}
}
if (num > 1) r *= num;
s[r].push_back(i);
}
for (int i = 1; i <= n; ++i)
if (!s[i].empty()) P.push_back(i);
printf("%d ", (int)P.size());
for (int x : P)
printf("%d ", x);
putchar('\n');
fflush(stdout);
for (int p : P)
read(xs[p]);
for (int i = n / 2; i >= 1; --i)
if (!s[i].empty())
for (int j = i * 2; j <= n; j += i)
xs[j] ^= xs[i];
for (int i = 1; i <= n; ++i)
if (s[i].empty()) xs[i] = 0;
for (int i = n / 2; i >= 1; --i)
if (!s[i].empty())
for (int j = i * 2; j <= n; j += i)
xs[i] ^= xs[j];
assert(xs[1] == 0 || xs[1] == 1);
while (!solve());
return 0;
}