HDU 5044 Tree 树链剖分+区间标记

Tree

Problem Description
You are given a tree (an acyclic undirected connected graph) with N nodes. The tree nodes are numbered from 1 to N

There are N - 1 edges numbered from 1 to N - 1.

Each node has a value and each edge has a value. The initial value is 0.

There are two kind of operation as follows:

● ADD1 u v k: for nodes on the path from u to v, the value of these nodes increase by k.

● ADD2 u v k: for edges on the path from u to v, the value of these edges increase by k.

After finished M operation on the tree, please output the value of each node and edge.

 
Input
The first line of the input is T (1 ≤ T ≤ 20), which stands for the number of test cases you need to solve.

The first line of each case contains two integers N ,M (1 ≤ N, M ≤105),denoting the number of nodes and operations, respectively.

The next N - 1 lines, each lines contains two integers u, v(1 ≤ u, v ≤ N ), denote there is an edge between u,v and its initial value is 0.

For the next M line, contain instructions “ADD1 u v k” or “ADD2 u v k”. (1 ≤ u, v ≤ N, -105 ≤ k ≤ 105)

 
Output
For each test case, print a line “Case #t:”(without quotes, t means the index of the test case) at the beginning.

The second line contains N integer which means the value of each node.

The third line contains N - 1 integer which means the value of each edge according to the input order.

 
Sample Input
2
4 2
1 2
2 3
2 4
ADD1 1 4 1
ADD2 3 4 2
4 2
1 2
2 3
1 4
ADD1 1 4 5
ADD2 3 2 4
 
Sample Output
Case #1:
1 1 0 1
0 2 2
Case #2:
5 0 0 5
0 4 0
 

题意:

  给你一棵树,n个结点

  1、将u到v之间的结点权值加k;

  2、将u到v之间的边权加k。

  输出经过修改后所有的边权和点权。

题解:

  这题线段树超时

  需要用到一个区间更新小技巧

  比如x,y这个区间+k,那么sum[x] += k, sum[y+1] -= k;

  最后统计一个前缀和就可以了

  这题读入挂超时,不用能A,格式也要注意了

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 2e5+, M = 1e3+, mod = 1e9+, inf = 2e9; int dep[N],head[N],t=,sz[N],fa[N],indexS,top[N],pos[N],son[N],idpos[N];
struct ss{int to,next,id;}e[N*];
int n;
void add(int u,int v,int id)
{e[t].to = v;e[t].next = head[u];e[t].id=id;head[u] = t++;}
void dfs(int u) {
int k = ;
sz[u] = ;
dep[u] = dep[fa[u]] + ;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(to == fa[u]) continue;
fa[to] = u;
idpos[to] = e[i].id;
dfs(to);
sz[u] += sz[to];
if(sz[to] > sz[k]) k = to;
}
if(k) son[u] = k;
}
void dfs(int u,int chain) {
int k = ;
pos[u] = ++indexS;
top[u] = chain;
if(son[u] > )
dfs(son[u],chain);
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(dep[to] > dep[u] && son[u] != to)
dfs(to,to);
}
}
LL sum[N],sum2[N];
void updateL(int x,int y,int k) {
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x,y);
sum2[pos[top[x]]] +=k;
sum2[pos[x]+] -=k;
x = fa[top[x]];
}
if(dep[x] < dep[y]) swap(x,y);
sum2[pos[y]] +=k;
sum2[pos[x]+] -=k;
}
void updateW(int x,int y,int k) {
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x,y);
sum[pos[top[x]]] += k;
sum[pos[x] + ] -= k;
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x,y);
sum[pos[x] + ] += k;
sum[pos[y] + ] -= k;
}
void init() {
t = ;
memset(head,,sizeof(head));
indexS = ;fa[] = ;
for(int i = ; i <= n+; ++i) sum[i] = , sum2[i] = ;
for(int i = ; i <= n; ++i) son[i] = ,sz[i] = ;
}
int T,m,cas = ;
LL f[N];
int main() {
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m);
init();
for(int i = ; i < n; ++i) {
int x,y;
scanf("%d%d",&x,&y);
add(x,y,i),add(y,x,i);
}
dfs();
dfs(,);
while(m--) {
char ch[];
int x,y,k;
scanf("%s",ch);
scanf("%d%d%d",&x,&y,&k);
if(ch[] == '') {
updateL(x,y,k);
}
else if(x!=y){
updateW(x,y,k);
}
}
printf("Case #%d:\n",cas++);
for(int i = ; i <= n; ++i)
sum[i]+=sum[i-],sum2[i]+=sum2[i-];
for(int i = ; i <= n; ++i) f[idpos[i]] = sum[pos[i]];
for(int i = ; i < n; ++i)
printf("%I64d ",sum2[pos[i]]);
printf("%I64d\n",sum2[pos[n]]);
for(int i = ; i < n-; ++i) printf("%I64d ",f[i]);
if(n- > )printf("%I64d",f[n-]);
puts("");
}
return ;
}
上一篇:新SQL temp


下一篇:(二十八)动态盐的MD5加密算法(java实现)