Java集合(2):LinkedList

一.LinkedList介绍

  LinkedList也和ArrayList一样实现了List接口,但是它执行插入和删除操作时比ArrayList更加高效,因为它是基于链表的。基于链表也决定了它在随机访问方面要比ArrayList逊色一点。

  除此之外,LinkedList还提供了一些可以使其作为栈、队列、双端队列的方法。这些方法中有些彼此之间只是名称的区别,以使得这些名字在特定的上下文中显得更加的合适。

1.LinkedList的继承关系

public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable

LinkedList的类图关系如下:

Java集合(2):LinkedList  

  • LinkedList 是一个继承于AbstractSequentialList的双向链表。它也可以被当作堆栈、队列或双端队列进行操作。
  • LinkedList 实现 List 接口,能对它进行队列操作。
  • LinkedList 实现 Deque 接口,即能将LinkedList当作双端队列使用。
  • LinkedList 实现了Cloneable接口,即覆盖了函数clone(),能克隆。
  • LinkedList 实现java.io.Serializable接口,这意味着LinkedList支持序列化,能通过序列化去传输。
  • LinkedList 是非同步的。

2.LinkedList数据结构原理

LinkedList底层的数据结构是基于双向循环链表的,且头结点中不存放数据

Java集合(2):LinkedList

二.LinkedList源码解析

1.私有属性

LinkedList中之定义了两个属性:

private transient Entry<E> header = new Entry<E>(null, null, null);
private transient int size = 0;

  header是双向链表的头节点,不包含数据,它是双向链表节点所对应的类Entry的实例。Entry中包含成员变量: previous, next, element。其中,previous是该节点的上一个节点,next是该节点的下一个节点,element是该节点所包含的值。
  size是双向链表中节点实例的个数。

2.节点类即Entry类

 private static class Entry<E> {
E element;
Entry<E> next;
Entry<E> previous; Entry(E element, Entry<E> next, Entry<E> previous) {
this.element = element;
this.next = next;
this.previous = previous;
}
}

定义了存储的元素、前一个元素、后一个元素,这就是双向链表的节点的定义,每个节点只知道自己的前一个节点和后一个节点。

3.LinkedList的构造方法

 public LinkedList() {
header.next = header.previous = header;
} public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}

LinkedList提供了两个构造方法。

  第一个构造方法不接受参数,将header实例的previous和next全部指向header实例(注意,这个是一个双向循环链表,如果不是循环链表,空链表的情况应该是header节点的前一节点和后一节点均为null),这样整个链表其实就只有header一个节点,用于表示一个空的链表。执行完构造函数后,header实例自身形成一个闭环。

  第二个构造方法接收一个Collection参数c,调用第一个构造方法构造一个空的链表,之后通过addAll将c中的元素全部添加到链表中。

4.元素添加

 // 将元素(E)添加到LinkedList中
public boolean add(E e) {
// 将节点(节点数据是e)添加到表头(header)之前。
// 即,将节点添加到双向链表的末端。
addBefore(e, header);
return true;
} public void add(int index, E element) {
addBefore(element, (index==size ? header : entry(index)));
} private Entry<E> addBefore(E e, Entry<E> entry) {
Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
newEntry.previous.next = newEntry;
newEntry.next.previous = newEntry;
size++;
modCount++;
return newEntry;
}

  addBefore(E e,Entry<E> entry)方法是个私有方法,所以无法在外部程序中调用(当然,这是一般情况,你可以通过反射上面的还是能调用到的)。

  addBefore(E e,Entry<E> entry)先通过Entry的构造方法创建e的节点newEntry(包含了将其下一个节点设置为entry,上一个节点设置为entry.previous的操作,相当于修改newEntry的“指针”),之后修改插入位置后newEntry的前一节点的next引用和后一节点的previous引用,使链表节点间的引用关系保持正确。之后修改和size大小和记录modCount,然后返回新插入的节点。

  总结,addBefore(E e,Entry<E> entry)实现在entry之前插入由e构造的新节点。而add(E e)实现在header节点之前插入由e构造的新节点。

Java集合(2):LinkedList

另外,还有addFirst和addLast方法

 public void addFirst(E e) {
addBefore(e, header.next);
} public void addLast(E e) {
addBefore(e, header);
}

  addFrist(E e)只需实现在header元素的下一个元素之前插入,即示意图中的一号之前。addLast(E e)只需在实现在header节点前(因为是循环链表,所以header的前一个节点就是链表的最后一个节点)插入节点(插入后在2号节点之后)。

5.删除数据remove()

  LinkedList中删除数据的方法有很多。remove(),remove(int index),remove(Object o), removeFirst(),removeLast(),removeFirstOccurrence(),removeLastOccurence()等。几个remove方法最终都是调用了一个私有方法:remove(Entry<E> e),只是其他简单逻辑上的区别。下面分析remove(Entry<E> e)方法。

 private E remove(Entry<E> e) {
if (e == header)
throw new NoSuchElementException();
// 保留将被移除的节点e的内容
E result = e.element;
// 将前一节点的next引用赋值为e的下一节点
e.previous.next = e.next;
// 将e的下一节点的previous赋值为e的上一节点
e.next.previous = e.previous;
// 上面两条语句的执行已经导致了无法在链表中访问到e节点,而下面解除了e节点对前后节点的引用
e.next = e.previous = null;
// 将被移除的节点的内容设为null
e.element = null;
// 修改size大小
size--;
modCount++;
// 返回移除节点e的内容
return result;
}

清空预删除节点:

e.next = e.previous = null;

e.element = null;

交给gc完成资源回收,删除操作结束。

与ArrayList比较而言,LinkedList的删除动作不需要“移动”很多数据,从而效率更高。

6.clear()和clone()方法

(1).clear()

 public void clear() {
Entry<E> e = header.next;
// e可以理解为一个移动的“指针”,因为是循环链表,所以回到header的时候说明已经没有节点了
while (e != header) {
// 保留e的下一个节点的引用
Entry<E> next = e.next;
// 接触节点e对前后节点的引用
e.next = e.previous = null;
// 将节点e的内容置空
e.element = null;
// 将e移动到下一个节点
e = next;
}
// 将header构造成一个循环链表,同构造方法构造一个空的LinkedList
header.next = header.previous = header;
// 修改size
size = 0;
modCount++;
}

(2).clone()

 public Object clone() {
LinkedList<E> clone = null;
try {
clone = (LinkedList<E>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
clone.header = new Entry<E>(null, null, null);
clone.header.next = clone.header.previous = clone.header;
clone.size = 0;
clone.modCount = 0;
for (Entry<E> e = header.next; e != header; e = e.next)
clone.add(e.element);
return clone;
}

  调用父类的clone()方法初始化对象链表clone,将clone构造成一个空的双向循环链表,之后将header的下一个节点开始将逐个节点添加到clone中。最后返回克隆的clone对象。

7.toArray()方法

(1).toArray()

 public Object[] toArray() {
Object[] result = new Object[size];
int i = 0;
for (Entry<E> e = header.next; e != header; e = e.next)
result[i++] = e.element;
return result;
}

创建大小和LinkedList相等的数组result,遍历链表,将每个节点的元素element复制到数组中,返回数组。

(2).toArray(T[] a)

 public <T> T[] toArray(T[] a) {
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), size);
int i = 0;
Object[] result = a;
for (Entry<E> e = header.next; e != header; e = e.next)
result[i++] = e.element;
if (a.length > size)
a[size] = null;
return a;
}

  先判断出入的数组a的大小是否足够,若大小不够则拓展。这里用到了发射的方法,重新实例化了一个大小为size的数组。之后将数组a赋值给数组result,遍历链表向result中添加的元素。最后判断数组a的长度是否大于size,若大于则将size位置的内容设置为null。返回a。

  从代码中可以看出,数组a的length小于等于size时,a中所有元素被覆盖,被拓展来的空间存储的内容都是null;若数组a的length的length大于size,则0至size-1位置的内容被覆盖,size位置的元素被设置为null,size之后的元素不变。

8.遍历数据:Iterator()

除了Entry,LinkedList还有一个内部类:ListItr。

ListItr实现了ListIterator接口,可知它是一个迭代器,通过它可以遍历修改LinkedList。

在LinkedList中提供了获取ListItr对象的方法:listIterator(int index)。

下面详细分析ListItr。

 private class ListItr implements ListIterator<E> {
// 最近一次返回的节点,也是当前持有的节点
private Entry<E> lastReturned = header;
// 对下一个元素的引用
private Entry<E> next;
// 下一个节点的index
private int nextIndex;
private int expectedModCount = modCount;
// 构造方法,接收一个index参数,返回一个ListItr对象
ListItr(int index) {
// 如果index小于0或大于size,抛出IndexOutOfBoundsException异常
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index+
", Size: "+size);
// 判断遍历方向
if (index < (size >> 1)) {
// next赋值为第一个节点
next = header.next;
// 获取指定位置的节点
for (nextIndex=0; nextIndex<index; nextIndex++)
next = next.next;
} else {
// else中的处理和if块中的处理一致,只是遍历方向不同
next = header;
for (nextIndex=size; nextIndex>index; nextIndex--)
next = next.previous;
}
}
// 根据nextIndex是否等于size判断时候还有下一个节点(也可以理解为是否遍历完了LinkedList)
public boolean hasNext() {
return nextIndex != size;
}
// 获取下一个元素
public E next() {
checkForComodification();
// 如果nextIndex==size,则已经遍历完链表,即没有下一个节点了(实际上是有的,因为是循环链表,任何一个节点都会有上一个和下一个节点,这里的没有下一个节点只是说所有节点都已经遍历完了)
if (nextIndex == size)
throw new NoSuchElementException();
// 设置最近一次返回的节点为next节点
lastReturned = next;
// 将next“向后移动一位”
next = next.next;
// index计数加1
nextIndex++;
// 返回lastReturned的元素
return lastReturned.element;
} public boolean hasPrevious() {
return nextIndex != 0;
}
// 返回上一个节点,和next()方法相似
public E previous() {
if (nextIndex == 0)
throw new NoSuchElementException(); lastReturned = next = next.previous;
nextIndex--;
checkForComodification();
return lastReturned.element;
} public int nextIndex() {
return nextIndex;
} public int previousIndex() {
return nextIndex-1;
}
// 移除当前Iterator持有的节点
public void remove() {
checkForComodification();
Entry<E> lastNext = lastReturned.next;
try {
LinkedList.this.remove(lastReturned);
} catch (NoSuchElementException e) {
throw new IllegalStateException();
}
if (next==lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = header;
expectedModCount++;
}
// 修改当前节点的内容
public void set(E e) {
if (lastReturned == header)
throw new IllegalStateException();
checkForComodification();
lastReturned.element = e;
}
// 在当前持有节点后面插入新节点
public void add(E e) {
checkForComodification();
// 将最近一次返回节点修改为header
lastReturned = header;
addBefore(e, next);
nextIndex++;
expectedModCount++;
}
// 判断expectedModCount和modCount是否一致,以确保通过ListItr的修改操作正确的反映在LinkedList中
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}

下面是一个ListItr的使用实例。

 LinkedList<String> list = new LinkedList<String>();
list.add("First");
list.add("Second");
list.add("Thrid");
System.out.println(list);
ListIterator<String> itr = list.listIterator();
while (itr.hasNext()) {
System.out.println(itr.next());
}
try {
System.out.println(itr.next());// throw Exception
} catch (Exception e) {
// TODO: handle exception
}
itr = list.listIterator();
System.out.println(list);
System.out.println(itr.next());
itr.add("new node1");
System.out.println(list);
itr.add("new node2");
System.out.println(list);
System.out.println(itr.next());
itr.set("modify node");
System.out.println(list);
itr.remove();
System.out.println(list);
 结果:
[First, Second, Thrid]
First
Second
Thrid
[First, Second, Thrid]
First
[First, new node1, Second, Thrid]
[First, new node1, new node2, Second, Thrid]
Second
[First, new node1, new node2, modify node, Thrid]
[First, new node1, new node2, Thrid]

LinkedList还有一个提供Iterator的方法:descendingIterator()。该方法返回一个DescendingIterator对象。DescendingIterator是LinkedList的一个内部类。

9.其他方法

LinkedList中还有许多其他方法,在此不一一介绍。

contains(Object o),element(),getFirst(),get(int index),getLast(),set(int index,E element), lastIndexOf(Object o),

offer(E e)  在链表尾部插入元素,offerFirst(E e)  在链表开头插入元素,offerLast(E e)  在链表末尾插入元素    这三个方法都调用了相应的add方法。

peek(),peekFirst(),peekLast()  调用了对应的get方法

poll(),pollFirst(),pollLast()  poll相关的方法都是获取并移除某个元素。都是和remove操作相关。

pop(),push(E e)  弹出一个元素和压入一个元素,仅仅是调用了removeFirst()和addFirst()方法。

参考:http://www.cnblogs.com/ITtangtang/p/3948610.html#a9

http://www.cnblogs.com/hzmark/archive/2012/12/25/LinkedList.html

上一篇:(一)《Maven实战》读书笔记 —— Maven简介


下一篇:maven 简介 —— maven权威指南学习笔记(一)