http://poj.org/problem?id=1106
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 4488 | Accepted: 2379 |
Description
A transmitter T is located somewhere on a 1,000 square meter grid. It broadcasts in a semicircular area of radius r. The transmitter may be rotated any amount, but not moved. Given N points anywhere on the grid, compute the maximum number of points that can be simultaneously reached by the transmitter's signal. Figure 1 shows the same data points with two different transmitter rotations.
All input coordinates are integers (0-1000). The radius is a positive real number greater than 0. Points on the boundary of a semicircle are considered within that semicircle. There are 1-150 unique points to examine per transmitter. No points are at the same location as the transmitter.
Input
Output
Sample Input
25 25 3.5
7
25 28
23 27
27 27
24 23
26 23
24 29
26 29
350 200 2.0
5
350 202
350 199
350 198
348 200
352 200
995 995 10.0
4
1000 1000
999 998
990 992
1000 999
100 100 -2.5
Sample Output
3
4
4
Source
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#define eps 1e-6
typedef struct point
{
double x,y;
}point; bool dy(double x,double y){ return x>y+eps; }
bool xy(double x,double y){ return x<y-eps; }
bool dyd(double x,double y){ return x>y-eps; }
bool xyd(double x,double y){ return x<y+eps; }
bool dd(double x,double y){ return fabs(x-y)<eps; } double crossProduct(point a,point b,point c)
{
return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
} double dist(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} point c[];
double st,en,ri;
point tmp;
int solve(int n)
{
int ans;
int maxx=;
for(int i=;i<n;i++)
{
ans=;
for(int j=;j<n;j++)
{
if(i!=j&&dyd(crossProduct(tmp,c[i],c[j]),0.0))
{
ans++;
}
}
if(ans>maxx)
{
maxx=ans;
//ans=0;
}
}
return maxx;
} int main()
{
int n;
double a,b;
while(scanf("%lf%lf%lf",&st,&en,&ri)!=EOF&&ri>=)
{
point p;
tmp.x=st;
tmp.y=en;
scanf("%d",&n);
int cas=;
for(int i=;i<n;i++)
{
scanf("%lf%lf",&p.x,&p.y);
if(xyd(dist(tmp,p),ri))
{
c[cas++]=p;
}
}
printf("%d\n",solve(cas));
}
}