C#多线程之线程同步篇3

  在上一篇C#多线程之线程同步篇2中,我们主要学习了AutoResetEvent构造、ManualResetEventSlim构造和CountdownEvent构造,在这一篇中,我们将学习Barrier构造、ReaderWriterLockSlim构造和SpinWait构造。

七、使用Barrier构造

  在这一小节中,我们将学习一个比较有意思的同步构造:Barrier。Barrier构造可以帮助我们控制多个等待线程达到指定数量后,才发送通知信号,然后所有等待线程才能继续执行,并且在每次等待线程达到指定数量后,还能执行一个回调方法。具体步骤如下所示:

1、使用Visual Studio 2015创建一个新的控制台应用程序。

2、双击打开“Program.cs”文件,编写代码如下所示:

 using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread; namespace Recipe07
{
class Program
{
static Barrier barrier = new Barrier(, b => WriteLine($"End of phase {b.CurrentPhaseNumber + 1}")); static void PlayMusic(string name, string message, int seconds)
{
for(int i = ; i < ; i++)
{
WriteLine("----------------------------------------------");
Sleep(TimeSpan.FromSeconds(seconds));
WriteLine($"{name} starts to {message}");
Sleep(TimeSpan.FromSeconds(seconds));
WriteLine($"{name} finishes to {message}");
barrier.SignalAndWait();
} } static void Main(string[] args)
{
var t1 = new Thread(() => PlayMusic("the guitarist", "play an amazing solo", ));
var t2 = new Thread(() => PlayMusic("the singer", "sing his song", )); t1.Start();
t2.Start();
}
}
}

3、运行该控制台应用程序,运行效果如下图所示:

C#多线程之线程同步篇3

  在第10行代码处,我们创建了一个Barrier的实例barrier,并给其构造方法的“participantCount”参数赋值为2,表示barrier参与线程的数量为2,也就是说要有2个线程达到阻塞后,barrier才发送通知信号,其阻塞线程才能继续执行。第二个参数“postPhaseAction”是一个Action类型的委托,表示当阻塞线程达到规定数量后要执行的回调方法。

  在第28~29行代码处,我们创建了2个线程t1和t2,用于执行“PlayMusic”方法。t2线程首先执行到第21行代码处,在这一行代码中,我们在线程t2中调用了barrier的“SignalAndWait”方法,等待参与数量的线程达到构造方法指定的数量2时,才能继续执行,因为,在t2线程调用该方法时,只有一个线程t2被阻塞,没有达到规定数量2,所以,t2线程不能继续执行。当t1线程执行到第21行代码处时,也调用了barrier的“SignalAndWait”方法,这个时候等待线程的数量达到规定的数量2,所以t1和t2线程都能继续执行,并且在barrier的构造方法的第二个参数指定的回调方法也被执行。

  当两个线程执行“PlayMusic”方法的第二次循环时,过程与第一次一样,不在描述。

八、使用ReaderWriterLockSlim构造

  在这一小节中,我们将学习如何使用ReaderWriterLockSlim构造来线程安全地使用多线程读写集合中的数据。具体步骤如下所示:

1、使用Visual Studio 2015创建一个新的控制台应用程序。

2、双击打开“Program.cs”文件,编写代码如下所示:

 using System;
using System.Collections.Generic;
using System.Threading;
using static System.Console;
using static System.Threading.Thread; namespace Recipe08
{
class Program
{
// 表示用于管理资源访问的锁定状态,可实现多线程读取或进行独占式写入访问
static ReaderWriterLockSlim rw = new ReaderWriterLockSlim();
static Dictionary<int, int> items = new Dictionary<int, int>(); static void Read()
{
WriteLine("Reading contents of a dictionary");
while (true)
{
try
{
// 尝试进入读取模式锁定状态
rw.EnterReadLock();
foreach(var key in items.Keys)
{
Sleep(TimeSpan.FromSeconds(0.1));
}
}
finally
{
// 减少读取模式的递归计数,并在生成的计数为 0(零)时退出读取模式
rw.ExitReadLock();
}
}
} static void Write(string threadName)
{
while (true)
{
try
{
int newKey = new Random().Next();
// 尝试进入可升级模式锁定状态
rw.EnterUpgradeableReadLock();
if (!items.ContainsKey(newKey))
{
try
{
// 尝试进入写入模式锁定状态
rw.EnterWriteLock();
items[newKey] = ;
WriteLine($"New key {newKey} is added to a dictionary by a {threadName}");
}
finally
{
// 减少写入模式的递归计数,并在生成的计数为 0(零)时退出写入模式
rw.ExitWriteLock();
}
}
Sleep(TimeSpan.FromSeconds(0.1));
}
finally
{
// 减少可升级模式的递归计数,并在生成的计数为 0(零)时退出可升级模式
rw.ExitUpgradeableReadLock();
}
}
} static void Main(string[] args)
{
new Thread(Read) { IsBackground = true }.Start();
new Thread(Read) { IsBackground = true }.Start();
new Thread(Read) { IsBackground = true }.Start(); new Thread(() => Write("Thread 1")) { IsBackground = true }.Start();
new Thread(() => Write("Thread 2")) { IsBackground = true }.Start(); Sleep(TimeSpan.FromSeconds());
}
}
}

3、运行该控制台应用程序,运行效果(每次运行效果可能不同)如下图所示:

C#多线程之线程同步篇3

  在第73~75行代码处,我们创建了3个后台线程来读取集合中的数据。在第77~78行代码处,我们创建了2个后台线程向集合中写入数据。为了线程安全地对集合进行操作,我们使用为此场景专门设计的ReaderWriterLockSlim构造。该构造有两种类型的锁:读取模式锁和写入模式锁。读取模式锁允许多线程读取数据,写入模式锁阻塞其他线程的每一个操作直到写入模式锁被释放为止。

  有一个非常有趣的场景,当我们想获得一个读取模式锁从集合中读取一些数据,并根据这些数据获得一个写入模式锁以更新集合时,如果我们立即就获得锁定模式锁的话不仅消耗的时间多,而且还不允许我们读取数据,因为当我们获得一个写入模式锁的时候,集合就被锁定了。为了尽量减少这种时间的浪费,我们可以使用“EnterUpgradeableReadLock”方法获得读取模式锁来读取数据,如果读取完毕数据后,我们发现需要更新底层集合,那么我们可以使用“EnterWriteLock”升级我们的锁,然后快速执行写入操作并使用“ExitWriteLock”释放写入模式锁,最后使用“ExitUpgradeableReadLock”释放可升级模式锁。

  在上述代码中,我们获得一个随机数,然后获得一个读取模式锁,并检查该随机数是否已在集合中存在,如果不存在,我们升级该读取模式锁为写入模式锁,然后向集合中添加一个新的key。使用try/finally块是一个比较好的方式,它可以保证我们总能释放锁获得的锁。

九、使用SpinWait构造

  在这一小节中,我们将学习如何在不涉及kernel-mode构造的情况下等待一个线程的执行。另外还将介绍SpinWait构造,该构造是一种混合同步构造,主要用于设计在用户模式中等待一段时间后,然后将其切换到内核模式,以节省CUP时间。具体步骤如下所示:

1、使用Visual Studio 2015创建一个新的控制台应用程序。

2、双击打开“Program.cs”文件,编写代码如下所示:

 using System;
using System.Threading;
using static System.Console;
using static System.Threading.Thread; namespace Recipe09
{
class Program
{
static volatile bool isCompleted = false; static void UserModeWait()
{
while (!isCompleted)
{
Write(".");
}
WriteLine();
WriteLine("Waiting is complete");
} static void HybridSpinWait()
{
// 提供对基于自旋的等待的支持
var w = new SpinWait();
while (!isCompleted)
{
// 执行单一自旋
w.SpinOnce();
// 获取对 System.Threading.SpinWait.SpinOnce 的下一次调用是否将产生处理器,同时触发强制上下文切换
WriteLine(w.NextSpinWillYield);
}
WriteLine("Waiting is complete");
} static void Main(string[] args)
{
var t1 = new Thread(UserModeWait);
var t2 = new Thread(HybridSpinWait); WriteLine("Running user mode waiting");
t1.Start();
Sleep();
isCompleted = true;
Sleep(TimeSpan.FromSeconds());
isCompleted = false;
WriteLine("Running hybrid SpinWait construct waiting");
t2.Start();
Sleep();
isCompleted = true;
}
}
}

3、运行该控制台应用程序,运行效果(每次运行效果可能不同)如下图所示:

C#多线程之线程同步篇3

  在上述程序中,我们创建了一个线程执行一个无线循环20毫秒,直到在主线程中将isCompleted变量设置为true。我们可以将此时间设置为20-30秒,然后打开任务管理器,我们可以看到CPU的使用率比较高。

  我们使用volatile关键字声明了一个名为“isCompleted”的静态字段。volatile 关键字指示一个字段可以由多个同时执行的线程修改。声明为 volatile 的字段不受编译器优化(假定由单个线程访问)的限制。这样可以确保该字段在任何时间呈现的都是最新的值。

  然后,我们使用SpinWait版本,在第29行代码处,我们调用了SpinWait的“SpinOnce”方法,执行一次自旋。当SpinWait自旋达到一定次数后,如果有必要当前线程会让出底层的时间片并触发上下文切换。在这个版本中,如果我们将第49行代码的等待时间修改为20~30秒,然后打开任务管理器,可以发现CPU使用率是比较低的。

  至此,关于线程同步的知识就学习到这儿!

  源码下载

上一篇:1 web.xml配置详解


下一篇:Dynamics CRM项目实例之七:站点地图修改,联系人-订单-积分管理