Python超级码力在线编程大赛初赛题解

P1 三角魔法

描述
小栖必须在一个三角形中才能施展魔法,现在他知道自己的坐标和三个点的坐标,他想知道他能否施展魔法

很多人学习python,不知道从何学起。
很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手。
很多已经做案例的人,却不知道如何去学习更加高深的知识。
那么针对这三类人,我给大家提供一个好的学习平台,免费领取视频教程,电子书籍,以及课程的源代码!
QQ群:101677771

  • 点在边上也属于三角形内
  • −109<=x,y<=109-10^{9}<=x, y<=10^{9}−109<=x,y<=109

解:

  • 判断是否共线
  • 判断是否在三角形内

补充知识(好久之前学的,早忘了):

  1. 判断是否共线
    对于三个点(x0,y0)(x0, y0)(x0,y0) ,(x1,y1)(x1, y1)(x1,y1) ,(x2,y2)(x2, y2)(x2,y2) ,如果满足(y3−y1)(x2−x1)−(y2−y1)(x3−x1)=0(y 3-y 1)(x 2-x 1)-(y 2-y 1)(x 3-x 1)=0(y3−y1)(x2−x1)−(y2−y1)(x3−x1)=0, 那么这三点共线。

  2. 判断是否在三角形内:
    判断PPP是否在A,B,CA,B, CA,B,C组成的三角形内。 如果在三角形内,则:
    AP=u×(AB)+v×ACA P=u \times(A B)+v\times A CAP=u×(AB)+v×AC
    满足0≤u,v≤10 \leq u,v \leq 10≤u,v≤1, 且u+v≤1u+v\leq 1u+v≤1。

    v=x2y0−y2x0x1y0−y1x0v=\frac{x_{2} y_{0}-y_{2} x_{0}}{x_{1} y_{0}-y_{1} x_{0}}v=x1​y0​−y1​x0​x2​y0​−y2​x0​​
    u=x2y1−y2x1x0y1−y0x1u=\frac{x_{2} y_{1}-y_{2} x_{1}}{x_{0} y_{1}-y_{0} x_{1}}u=x0​y1​−y0​x1​x2​y1​−y2​x1​​
    其中, AP=(x2,y2)AP=(x2, y2)AP=(x2,y2), AB=(x0,y0)AB=(x0,y0)AB=(x0,y0), AC=(x1,y1)AC=(x1,y1)AC=(x1,y1)

class Solution:
"""
@param triangle: Coordinates of three points
@param point: Xiaoqi's coordinates
@return: Judge whether you can cast magic
"""
def castMagic(self, triangle, point):
# write your code here
return "Yes" if self.solve(triangle, point) else "No" def solve(self, triangle, point):
A, B, C = triangle
P = point
if self.isline(A, B, C): return False
def vec(P, X):
p0, p1 = P
x0, x1 = X
return [p0 - x0, p1 - x1]
AP, AB, AC = vec(A, P), vec(A, B), vec(A, C)
x0, y0 = AB
x1, y1 = AC
x2, y2 = AP
div = x1 * y0 - y1 * x0
u = (x2 * y0 - y2 * x0) / div
v = -(x2 * y1 - y2 * x1) / div
return 0 <= u <= 1 and 0 <= v <= 1 and u + v <= 1 def isline(self, A, B, C):
x1, y1 = A
x2, y2 = B
x3, y3 = C
return (y3 - y1) * (x2 - x1) == (y2 - y1) * (x3 - x1)

Python超级码力在线编程大赛初赛题解

P2 区间异或

描述
有一个数组num,现在定义区间对的和等于:左区间的最大值加右区间的最小值 由于小栖特别能突发奇想,他突然想知道多个区间对和的异或和是多少

4<=len(4<=\operatorname{len}(4<=len(num)<=50000)<=50000)<=50000
0<=num[i]<=100000000<=\operatorname{num}[i]<=100000000<=num[i]<=10000000
1<=len(1<=\operatorname{len}(1<=len(ask)<=100000)<=100000)<=100000
len(ask[0])=4,s\operatorname{len}(a s k[0])=4, slen(ask[0])=4,s,分别表示 l1,r1,l2,r2
num中视作下标从1开始,而不是0
左右区间可能重合

解:

  1. ST表 贴一下 秒过舒服
from math import log
class ST:
def __init__(self, arr):
n = len(arr)
K = int(log(n, 2))
self.Ma = [[0]*(K+1) for _ in range(n)]
self.Mi = [[0]*(K+1) for _ in range(n)]
for k in range(K+1):
for i in range(n):
if k == 0:
self.Ma[i][k] = arr[i]
self.Mi[i][k] = arr[i]
else:
if i + (1 << (k - 1)) >= n:
continue
self.Ma[i][k] = max(self.Ma[i][k-1], self.Ma[i+(1 << (k-1))][k-1])
self.Mi[i][k] = min(self.Mi[i][k-1], self.Mi[i+(1 << (k-1))][k-1]) def query_max(self, L, R):
k = int(log(R - L + 1, 2))
return max(self.Ma[L][k], self.Ma[R - (1 << k) + 1][k]) def query_min(self, L, R):
k = int(log(R - L + 1, 2))
return min(self.Mi[L][k], self.Mi[R - (1 << k) + 1][k]) class Solution:
"""
@param num: array of num
@param ask: Interval pairs
@return: return the sum of xor
"""
def Intervalxor(self, num, ask):
# write your code here
ret = 0
st = ST(num)
for L0, R0, L1, R1 in ask:
ret ^= st.query_min(L1 - 1, R1 - 1) + st.query_max(L0 - 1, R0 - 1)
return ret

Python超级码力在线编程大赛初赛题解

P3 五字回文

描述
小栖最近很喜欢回文串,由于小栖的幸运数字是5,他想知道形似“abcba"的回文串在他给定的字符串中的数量

s. length <=106<=10^{6}<=106
字符串s只包含小写字母

解:

  1. 打卡
class Solution:
"""
@param s: The given string
@return: return the number of Five-character palindrome
"""
def Fivecharacterpalindrome(self, s):
# write your code here
n = len(s)
def f(i):
if i + 4 >= n: return 0
if s[i] == s[i+4] and s[i+1] == s[i+3] and len(set(s[i:i+5])) == 3:
return 1
return 0
return 0 if not s else sum(f(i) for i in range(n))

Python超级码力在线编程大赛初赛题解

P4 小栖的金字塔

描述
小栖有一个金字塔,每一层都有编号.
Python超级码力在线编程大赛初赛题解Python超级码力在线编程大赛初赛题解

小栖可以在不同点间移动,假设小栖现在在(x1,y1)(x_1, y_1)(x1​,y1​),他能够移动到的下一个点满足x2>=x1&&y2>=y1现在小栖呆在(k,k)(k,k)(k,k)处,由于我们不能确定小栖现在在哪儿,所以你需要求出所有点(k,k)(k,k)(k,k)到达(n,n)(n,n)(n,n)的方案数的和。

1<=k<=n<=1071<=k<=n<=10^{7}1<=k<=n<=107
由于方案数很大,请对方案数取模1e9+7

解:

  1. 用dp算一下值, 写完就知道超时了。 看到1,2,6,22,90,394,1806,8558,415861, 2, 6, 22, 90, 394, 1806, 8558, 415861,2,6,22,90,394,1806,8558,41586,网上找了下才知道是施罗德数。
  2. 那我们就站在巨人的肩膀上把:)

下图为 n=1,2,3n=1,2,3 时的施罗德路径
Python超级码力在线编程大赛初赛题解Python超级码力在线编程大赛初赛题解施罗德数公式为:
Si=Si−1+∑i−1j=0SjSn−j−1S_{i}=S_{i-1}+\sum_{j=0}^{i-1} S_{j} S_{n-j-1}Si​=Si−1​+j=0∑i−1​Sj​Sn−j−1​

这个公式n比较小大概5次幂还行。题目是要7次幂, 有另外一个公式:
(i+1)Fi=(6n−3)Fi−1−(i−2)Fi−2(i+1) F_{i}=(6 n-3) F_{i-1}-(i-2) F_{i-2}(i+1)Fi​=(6n−3)Fi−1​−(i−2)Fi−2​
其中, FiF_iFi​ 满足 2Fi=Si,i⩾12 F_{i}=S_{i}, \quad i \geqslant 12Fi​=Si​,i⩾1。
到这里,还不能做出来, 还要取模, 好像用刀了Lucas公式什么的,没咋看,代码抄过来就好了。 反正, 以后它就是我的模板了。

class Solution:
"""
@param n: The number of pyramid levels n
@param k: Possible coordinates k
@return: Find the sum of the number of plans
"""
def pyramid(self, n, k):
#
k = [n - x for x in k]
n = max(k)
A = [1, 1] + [0] * (n - 1)
mod = 10 ** 9 + 7
def qmi (a, k):
ret = 1
while k:
if k & 1: ret = (ret * a) % mod
k >>= 1
a = (a * a) % mod
return ret for i in range(2, n+1):
A[i] = (((6 * i - 3) * A[i - 1] - (i - 2) * A[i - 2]) % mod) * (qmi(i + 1, mod - 2) % mod)
A[i] = A[i] % mod
ret = 0
for x in k:
if x == 0:
ret = (ret + A[0]) % mod
else:
ret = (ret + 2*A[x]) % mod
return ret % mod

Python超级码力在线编程大赛初赛题解

 
上一篇:Mac OS 文件、文件夹重命名的方法


下一篇:oracle从各个表取得数据保存到另一个表