pc send instructor pc ad

 1.
#include   <string.h>
#include <intrins.h> // 加入此头文件后,可使用_nop_库函数
#define MAIN_Fosc 11059200L //定义主时钟 #define Main_Fosc_KHZ (MAIN_Fosc / 1000) #include "15W4KxxS4.h"
#define Buf_Max 5
#define uint8 unsigned char
#define uint16 unsigned int
uint8 data Rec_Buf[Buf_Max];
uint8 i = ; #define S2_S 0x00
#define S2RI 0x01
#define S2TI 0x02
#define S3RI 0x01
#define S3TI 0x02
#define S4RI 0x01
#define S4TI 0x02 uint8 j = ;
uint8 m = ;
uint8 n = ;
uint8 td=;
volatile bit Flag=FALSE; uint8 uart1temp;
void delay_ms(unsigned char ms)
{
unsigned int i;
do
{
i = MAIN_Fosc / ;
while(--i) ; //14T per loop
}
while(--ms);
} void UartInit(void)
{
P_SW1|=0x80; //串口1在P1.6,P1.7
P_SW1&=0xBF;
SCON = 0x50;
S2CON = 0x50; //8位数据,可变波特率
S3CON = 0x10; //8位数据,可变波特率
S3CON &= 0x30; //串口3选择定时器2为波特率发生器
S4CON = 0x10; //8位数据,可变波特率
S4CON &= 0x30; //串口4选择定时器2为波特率发生器 AUXR |= 0x01; //串口1选择定时器2为波特率发生器
AUXR |= 0x04; //定时器2时钟为Fosc,即1T
T2L = 0xE8; //设定定时初值
T2H = 0xFF; //设定定时初值
AUXR |= 0x10; //启动定时器2 } void U1SendData(uint8 ch)
{
SBUF = ch; //写数据到UART数据寄存器
while(TI == ); //在停止位没有发送时,TI为0即一直等待
TI = ; //清除TI位(该位必须软件清零)
} void U1SendString(uint8 *s)
{
while (*s) //检测字符串结束标志
{
U1SendData(*s++); //发送当前字符
}
} void SendDataByUart1(uint8 dat)
{
if(!(dat^'a')|!(dat^'b')|!(dat^'c')|!(dat^'q') ){TI=; td= dat; }
else if(td=='a')
{ S2BUF = dat;
while(!(S2CON&S2TI));
S2CON&=~S2TI;
} else if(td=='b')
{
S3BUF = dat;
while(!(S3CON&S3TI));
S3CON&=~S3TI;
} else if (td=='c')
{
S4BUF = dat;
while(!(S4CON&S4TI));
S4CON&=~S4TI;
}
} void USART1_Tx_Puts(void)
{
if(Flag)
{
ES = ;
SendDataByUart1(uart1temp); ES = ;
Flag=FALSE;
}
}
/*
void Uart1() interrupt UART1_VECTOR
{
ES = 0;
Flag=TRUE;
if (RI )
{
RI = 0;
uart1temp = SBUF;
}
if (TI)
{
TI = 0;
}
ES = 1;
} */
void Uart1() interrupt UART1_VECTOR using
{
ES = ; // 串口1中断关闭
Flag=TRUE;
if (RI) //串行接收到停止位的中间时刻时,该位置1
{
RI = ; //清除RI位 (该位必须软件清零)
uart1temp = SBUF;
Rec_Buf[i] = uart1temp; //把串口1缓存SBUF寄存器数据依次存放到数组Rec_Buf中 i++;
if(i>Buf_Max) //接收数大于定义接收数组最大个数时,覆盖接收数组之前值
{
i = ;
}
}
if (TI) //在停止位开始发送时,该位置1
{
TI = ; //清除TI位(该位必须软件清零)
}
ES = ; // 串口1中断打开
} void ADC_config(void)
{
ADC_CONTR|=0x80; //开AD转换电源
delay_ms(); //适当延时等待AD转换供电稳定
P1ASF=0x10; //选择P1.4作为模拟功能AD使用
ADC_CONTR|=0x04; //选择P1.4作为AD转换通道输入使用
ADC_CONTR|=0x60; //AD转换速度为90个时钟周期转换一次
ADC_CONTR&=0xEF; //清AD转换完成标志
EADC=; //禁止ADC转换中断
CLK_DIV|=0x20; //ADC转换结果ADC_RES存高2位,ADC_RESL存低8位
ADC_CONTR|=0x08; //启动AD转换,ADC_START=1
} uint16 Get_ADC10bitResult(void)
{
uint16 AD_Dat=;
ADC_CONTR&=0xE7; // 将ADC_FLAG清0
//10位AD结果的高2位放ADC_RES的低2位,低8位在ADC_RESL
AD_Dat = ADC_RES; //将ADC_RES低2位移到应在的第9位和第10位
AD_Dat <<= ;
AD_Dat|= ADC_RESL; //将ADC_RESL的8位移到应在的低8位
ADC_CONTR|=0x08; //重新启动AD转换,ADC_START=1。
return AD_Dat;
} int main(void)
{
uint16 TempPhoto,Temp;
uint8 strPhoto[]; //打开总中断
P1M1 &= 0x3F; P1M0 &= 0x3F; //设置P1.6~P1.7为准双向口
UartInit();
delay_ms(); //初始化后延时
ES = ;
EA = ;
while()
{ USART1_Tx_Puts ( );
if( td=='q')
{ break;
}
} ADC_config();
while ()
{
memset(strPhoto, , sizeof(strPhoto)); //strTemp数组清零
TempPhoto = Get_ADC10bitResult(); //实时读取P1.7通道的AD转换结果
delay_ms();
if(TempPhoto==Temp) //如果ADC检测结果没有变化,则不更新屏显示
{
;
}
else //如果ADC检测结果发生变化,则更新屏显示内容
{
Temp=TempPhoto;
strPhoto[] = TempPhoto/+; //光强度百位
strPhoto[] = (TempPhoto%)/+; //光强度十位
strPhoto[] = (TempPhoto%)%+; //光强度个位
U1SendString(strPhoto);
U1SendString("\r\n"); //输出回车换行符,方便观察数据
}
delay_ms(); }
}
上一篇:【转】flannel网络的VXLAN及host-gw


下一篇:605. 种花问题