lyk在玩一个叫做“打怪兽”的游戏。
游戏的规则是这样的。
lyk一开始会有一个初始的能量值。每次遇到一个怪兽,若lyk的能量值>=怪兽的能量值,那么怪兽将会被打败,lyk的能量值增加1,否则lyk死亡,游戏结束。
若怪兽全部打完,游戏也将会结束。
共有n个怪兽,由于lyk比较弱,它一开始只有0点能量值。
n个怪兽排列随机,也就是说共有n!种可能,lyk想知道结束时它能量值的期望。
由于小数点比较麻烦,所以你只需要输出期望*n!关于1000000007取模后的值就可以了!
游戏的规则是这样的。
lyk一开始会有一个初始的能量值。每次遇到一个怪兽,若lyk的能量值>=怪兽的能量值,那么怪兽将会被打败,lyk的能量值增加1,否则lyk死亡,游戏结束。
若怪兽全部打完,游戏也将会结束。
共有n个怪兽,由于lyk比较弱,它一开始只有0点能量值。
n个怪兽排列随机,也就是说共有n!种可能,lyk想知道结束时它能量值的期望。
由于小数点比较麻烦,所以你只需要输出期望*n!关于1000000007取模后的值就可以了!
例如有两个怪兽,能量值分别为{0,1},那么答案为2,因为游戏结束时有两种可能,lyk的能量值分别为0和2。期望为1,1*2!=2,所以答案为2。
Input
第一行一个数n(1<=n<=100000)。
接下来一行n个数ai表示怪兽的能量(0<=ai<n)。
Output
一行表示答案
Input示例
2
0 1
Output示例
2 哎碰见数学就gg,刚开始以为答案就是方案个数和,后来才明白是总得分之和,就是所有情况对应的得分之和。
令f[i]表示过了第i层之后还没死的当前方案个数,有f[i]=f[i-1]*x%MOD, x表示在第i层可以打过的怪兽数量,x=tot[i-1]-(i-1)//因为前i-1层打过了i-1只所以要减去。
然后统计在第i层死亡的方案个数乘上得分(i-1)累加到答案上即可,最后记得加上得分为i的情况,也就是打过了所有的怪兽。
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
using namespace std;
#define LL long long
LL MOD=;
LL jc[];
LL a[];
LL tot[];
LL f[];
int main(){
LL i,j,k,n;
jc[]=;
for(LL i=;i<=;++i)
jc[i]=jc[i-]*i%MOD;
cin>>n;
for(i=;i<=n;++i) scanf("%lld",a+i),tot[a[i]]++;
for(i=;i<=n;++i) tot[i]+=tot[i-];
f[]=;
LL ans=;
for(i=;i<n;++i){
LL x=tot[i]-i;
LL y=tot[n]-tot[i];
f[i+]=f[i]*x%MOD;//到第i+1轮仍存活的方案个数
LL tmp=f[i]*y%MOD*jc[n-i-]%MOD*i%MOD;
ans+=tmp;
ans%=MOD;
}
ans+=f[n]*n;
ans%=MOD;
cout<<ans<<endl;
return ;
}