Kafka 源代码分析之ByteBufferMessageSet

这里分析一下message的封装类ByteBufferMessageSet类

ByteBufferMessageSet类的源代码在源代码目录message目录下.这个类主要封装了message,messageset,messageandoffset等类的对象.在Log类中读写log的时候基本上都是以这个类的对象为基本操作对象的.

下面看看类的具体代码.首先是初始化部分.

class ByteBufferMessageSet(val buffer: ByteBuffer) extends MessageSet with Logging { //这里作为入口传入ByteBuffer类型的buffer
private var shallowValidByteCount = -1 //设定了全局的验证字节统计变量.
//这里是几个不同的构造函数.但是都是以最初的构造函数为基础的.这里调用了BBMS对象的create方法创建新buffer.
def this(compressionCodec: CompressionCodec, messages: Message*) { //参数是压缩标志和message
this(ByteBufferMessageSet.create(new AtomicLong(0), compressionCodec, messages:_*))
}
//同上.只是参数不同而已.
def this(compressionCodec: CompressionCodec, offsetCounter: AtomicLong, messages: Message*) {
this(ByteBufferMessageSet.create(offsetCounter, compressionCodec, messages:_*))
}
//最简单的消息构造函数.
def this(messages: Message*) {
this(NoCompressionCodec, new AtomicLong(0), messages: _*)
}

  上面是几个不同的构造函数部分.构造函数应用到的ByteBufferMessageSet.create函数代码如下.

object ByteBufferMessageSet {
//创建函数的参数是offset,压缩,message.返回的是bytebuffer类型.
private def create(offsetCounter: AtomicLong, compressionCodec: CompressionCodec, messages: Message*): ByteBuffer = {
if(messages.size == 0) { //消息为空的话就返回一个空的buffer
MessageSet.Empty.buffer
} else if(compressionCodec == NoCompressionCodec) { //没有压缩的话.就分配一个新的messages大小的buffer.
val buffer = ByteBuffer.allocate(MessageSet.messageSetSize(messages))
for(message <- messages)
writeMessage(buffer, message, offsetCounter.getAndIncrement) //在这里将消息内容写入buffer中.
buffer.rewind() //将指针设置到开始位置.
buffer //返回buffer
} else { //这里则是启用压缩的处理动作了.
val byteArrayStream = new ByteArrayOutputStream(MessageSet.messageSetSize(messages)) //获取一个messages大小的字节流对象
val output = new DataOutputStream(CompressionFactory(compressionCodec, byteArrayStream)) //创建写入对象.
var offset = -1L
try {
for(message <- messages) { //将消息压缩写入字节流对象中去.
offset = offsetCounter.getAndIncrement
output.writeLong(offset)
output.writeInt(message.size)
output.write(message.buffer.array, message.buffer.arrayOffset, message.buffer.limit)
}
} finally {
output.close()
}
val bytes = byteArrayStream.toByteArray //转成字节
val message = new Message(bytes, compressionCodec) //创建一个压缩的消息对象.
val buffer = ByteBuffer.allocate(message.size + MessageSet.LogOverhead) /分配一个buffer
writeMessage(buffer, message, offset) //将压缩过的message写入到buffer.
buffer.rewind()
buffer
}
} def decompress(message: Message): ByteBufferMessageSet = {
val outputStream: ByteArrayOutputStream = new ByteArrayOutputStream
val inputStream: InputStream = new ByteBufferBackedInputStream(message.payload)
val intermediateBuffer = new Array[Byte](1024)
val compressed = CompressionFactory(message.compressionCodec, inputStream)
try {
Stream.continually(compressed.read(intermediateBuffer)).takeWhile(_ > 0).foreach { dataRead =>
outputStream.write(intermediateBuffer, 0, dataRead)
}
} finally {
compressed.close()
}
val outputBuffer = ByteBuffer.allocate(outputStream.size)
outputBuffer.put(outputStream.toByteArray)
outputBuffer.rewind
new ByteBufferMessageSet(outputBuffer)
}
//将message写入buffer
private[kafka] def writeMessage(buffer: ByteBuffer, message: Message, offset: Long) {
buffer.putLong(offset) //先写入offset 之后是size,最后是消息本身.
buffer.putInt(message.size)
buffer.put(message.buffer)
message.buffer.rewind()
}
}

  上面就是关于初始化部分做的工作.下面看看具体的函数.这个函数是作为核心函数.messages映射成对应的messageandoffset就在这里实现.被外部调用的好几个函数也都是依赖这个函数实现.

override def iterator: Iterator[MessageAndOffset] = internalIterator()

  /** iterator over compressed messages without decompressing */
def shallowIterator: Iterator[MessageAndOffset] = internalIterator(true) /** When flag isShallow is set to be true, we do a shallow iteration: just traverse the first level of messages. **/
private def internalIterator(isShallow: Boolean = false): Iterator[MessageAndOffset] = { //可以看见返回的是一个迭代对象,对象类想是messageandoffset
new IteratorTemplate[MessageAndOffset] { //这是一个抽象类.在这个地方返回了一个匿名类的实例.
var topIter = buffer.slice() //复制一份buffer
var innerIter: Iterator[MessageAndOffset] = null def innerDone():Boolean = (innerIter == null || !innerIter.hasNext) def makeNextOuter: MessageAndOffset = { //这里主要把没个message映射成messageandoffset
// if there isn't at least an offset and size, we are done
if (topIter.remaining < 12)
return allDone()
val offset = topIter.getLong()
val size = topIter.getInt()
if(size < Message.MinHeaderSize)
throw new InvalidMessageException("Message found with corrupt size (" + size + ")") // we have an incomplete message
if(topIter.remaining < size)
return allDone()
//上面这些主要是检查啥的.不细说了.主要映射在下面完成.
// read the current message and check correctness
val message = topIter.slice()
message.limit(size) //通过size截取第一个message
topIter.position(topIter.position + size) //将指针往前移.
val newMessage = new Message(message) //构建新message if(isShallow) {
new MessageAndOffset(newMessage, offset) //做映射返回.
} else { //剩下是判断是否有压缩的情况.
newMessage.compressionCodec match {
case NoCompressionCodec =>
innerIter = null
new MessageAndOffset(newMessage, offset)
case _ =>
innerIter = ByteBufferMessageSet.decompress(newMessage).internalIterator() //有压缩用对象里的方法处理.
if(!innerIter.hasNext)
innerIter = null
makeNext()
}
}
}
//在这个函数里调用映射函数.最后这个函数有next函数调用.
override def makeNext(): MessageAndOffset = {
if(isShallow){
makeNextOuter
} else {
if(innerDone())
makeNextOuter
else
innerIter.next
}
} }
}

  以上就是一个核心函数的处理过程.看看对应的抽象类IteratorTemplate的定义.

abstract class IteratorTemplate[T] extends Iterator[T] with java.util.Iterator[T] {

  private var state: State = NOT_READY
private var nextItem = null.asInstanceOf[T] def next(): T = {
if(!hasNext())
throw new NoSuchElementException()
state = NOT_READY
if(nextItem == null)
throw new IllegalStateException("Expected item but none found.")
nextItem
} def peek(): T = {
if(!hasNext())
throw new NoSuchElementException()
nextItem
} def hasNext(): Boolean = {
if(state == FAILED)
throw new IllegalStateException("Iterator is in failed state")
state match {
case DONE => false
case READY => true
case _ => maybeComputeNext()
}
} protected def makeNext(): T def maybeComputeNext(): Boolean = {
state = FAILED
nextItem = makeNext()
if(state == DONE) {
false
} else {
state = READY
true
}
} protected def allDone(): T = {
state = DONE
null.asInstanceOf[T]
} def remove =
throw new UnsupportedOperationException("Removal not supported") protected def resetState() {
state = NOT_READY
}
}

  定义很简单直白.

这个类主要封装了message和messageandoffset的操作对象.在Log,LogSegment中被用来操作消息实例.

上一篇:浅谈servlet与jsp的关系


下一篇:二十二、Spring MVC与Structs2的区别总结