UVA 1358 - Generator(dp+高斯消元+KMP)

UVA 1358 - Generator

option=com_onlinejudge&Itemid=8&page=show_problem&category=524&problem=4104&mosmsg=Submission+received+with+ID+14082913" target="_blank" style="">题目链接

题意:有m种字符(从'A'開始往后数的大写字母),如今有一个字符串,长度不超过12。如今每次随机生成一个字母,要求能产生该字符串的期望长度

思路:dp[i]表示产生长度i的期望长度,那么每次产生一个字符。相应m种转移,每种转移的概率为1/m,转移后的长度能够利用KMP的next数组去高速获得,然后因为转移可能形成环的情况,所以无法直接DP,利用高斯消元去解方程组

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std; typedef long long type; struct Frac { type a, b; Frac() {a = 0; b = 1;}
Frac(type a, type b) {this->a = a; this->b = b; deal();} void init() {a = 0; b = 1;} type gcd(type a, type b) {
while (b) {
type tmp = a % b;
a = b;
b = tmp;
}
return a;
} void deal() {
type d = gcd(a, b);
a /= d; b /= d;
if (b < 0) {
a = -a;
b = -b;
}
} Frac operator + (Frac c) {
Frac ans;
ans.a = a * c.b + b * c.a;
ans.b = b * c.b;
ans.deal();
return ans;
} Frac operator - (Frac c) {
Frac ans;
ans.a = a * c.b - b * c.a;
ans.b = b * c.b;
ans.deal();
return ans;
} Frac operator * (Frac c) {
Frac ans;
ans.a = a * c.a;
ans.b = b * c.b;
ans.deal();
return ans;
} Frac operator / (Frac c) {
Frac ans;
ans.a = a * c.b;
ans.b = b * c.a;
ans.deal();
return ans;
} void operator += (Frac c) {*this = *this + c;}
void operator += (type c) {*this = *this + Frac(c, 1);}
void operator -= (Frac c) {*this = *this - c;}
void operator *= (Frac c) {*this = *this * c;}
void operator /= (Frac c) {*this = *this / c;} bool operator > (Frac c) {return a * c.b > b * c.a;}
bool operator == (Frac c) { return a * c.b == b * c.a;}
bool operator < (Frac c) {return !(*this < c && *this == c);}
bool operator >= (Frac c) {return !(*this < c);}
bool operator <= (Frac c) {return !(*this > c);} bool operator != (Frac c) {return !(*this == c);}
bool operator != (type c) {return *this != Frac(c, 1);} void operator = (type c) {this->a = c; this->b = 1;}
}; typedef long long ll; Frac A[15][15]; int t, m, n, next[15];
char str[15]; void getnext() {
next[0] = next[1] = 0;
int j = 0;
for (int i = 2; i <= n; i++) {
while (j && str[i] != str[j + 1]) j = next[j];
if (str[i] == str[j + 1]) j++;
next[i] = j;
}
} void build() {
for (int i = 0; i <= n; i++)
for (int j = 0; j <= n + 1; j++)
A[i][j].init();
getnext();
A[n][n] = 1;
for (int i = 0; i < n; i++) {
A[i][i] = 1;
A[i][n + 1] = 1;
for (int j = 0; j < m; j++) {
if (str[i + 1] == j + 'A')
A[i][i + 1] += Frac(-1, m);
else {
int tmp = i;
int flag = 1;
while (tmp) {
tmp = next[tmp];
if (str[tmp + 1] == j + 'A') {
flag = 0;
A[i][tmp + 1] += Frac(-1, m);
break;
}
}
if (flag) A[i][0] += Frac(-1, m);
}
}
}
} ll gauss() {
for (int i = 0; i <= n; i++) {
int r;
for (r = i; r <= n; r++)
if (A[r][i] != 0) break;
for (int j = i; j <= n + 1; j++)
swap(A[i][j], A[r][j]);
for (int j = n + 1; j > i; j--)
A[i][j] /= A[i][i];
A[i][i] = 1;
for (int j = 0; j <= n; j++) {
if (i == j) continue;
if (A[j][i] != 0) {
for (int k = n + 1; k > i; k--)
A[j][k] -= A[j][i] * A[i][k];
A[j][i] = 0;
}
}
}
return (A[0][n + 1] / A[0][0]).a;
} int main() {
int cas = 0;
scanf("%d", &t);
while (t--) {
scanf("%d%s", &m, str + 1);
n = strlen(str + 1);
build();
printf("Case %d:\n", ++cas);
printf("%lld\n", gauss());
if (t) printf("\n");
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

上一篇:基于Zabbix IPMI监控服务器硬件状况


下一篇:如何在mac os中安装gdb及为gdb进行代码签名