作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/
题目地址:https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/description/
题目描述
Given a binary tree, find the lowest common ancestor (LCA)
of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given the following binary tree: root = [3,5,1,6,2,0,8,null,null,7,4]
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of of nodes 5 and 1 is 3.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself
according to the LCA definition.
Note:
- All of the nodes’ values will be unique.
- p and q are different and both values will exist in the binary tree.
题目大意
在一棵普通的二叉树中,找出两个节点的最小公共祖先。
解题方法
如果是BST的话,那就很简单了。可以参考一下【LeetCode】235. Lowest Common Ancestor of a Binary Search Tree 解题报告(Java & Python)的做法。
最低公共祖先的定义是,在一个二叉树中,我们能找到的最靠近叶子的节点,该节点同时是p和q的祖先节点。注意,如果p或者q本身也可以作为自己的祖先。
如果用递归的话,最重要的还是明白递归函数的作用是什么。这个题里面lowestCommonAncestor(root, p, q)函数的作用是判断p和q在root树中最低的公共祖先是什么,返回值是公共祖先。
这个题的模式叫做devide and conquer. 如果当前节点等于其中的p和q某一个节点,那么找到了节点,返回该节点,否则在左右子树分别寻找。
左右子树两个返回的是什么呢?按照该递归函数的定义,即找到了左子树和右子树里p和q的公共祖先,注意祖先可以是节点自己。然后根据左右侧找到的节点做进一步的判断。
如果左右侧查找的结果都不为空,说明分别找到了p和q,那么LCA就是当前节点。否则就在不为空的那个结果就是所求。
python代码如下:
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution(object):
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
if not root or p == root or q == root:
return root
left = self.lowestCommonAncestor(root.left, p, q)
right = self.lowestCommonAncestor(root.right, p, q)
if left and right:
return root
return left if left else right
日期
2018 年 6 月 22 日 —— 这周的糟心事终于完了
2019 年 1 月 9 日 —— 时不我待