一、Map集合概述
Map与Collection并列存在。用于保存具有映射关系的数据:key-value
- Map 中的 key 和 value 都可以是任何引用类型的数据
- Map 中的
key 用Set来存放,不允许重复
,即同一个 Map 对象所对应的类,须重写hashCode()和equals()
方法 - 常用String类作为Map的“键”
- key 和 value 之间存在单向一对一关系,即通过指定的 key 总能找到唯一的、确定的 value
- Map接口的常用实现类:HashMap、TreeMap、LinkedHashMap和Properties。其中,HashMap是 Map 接口使用频率最高的实现类
1.1 Map接口常用方法
添加、删除、修改操作:Object put(Object key,Object value)
:将指定key-value添加到(或修改)当前map对象中
void putAll(Map m)
:将m中的所有key-value对存放到当前map中
Object remove(Object key)
:移除指定key的key-value对,并返回value
void clear()
:清空当前map中的所有数据
元素查询的操作:Object get(Object key)
:获取指定key对应的valueboolean containsKey(Object key)
:是否包含指定的keyboolean containsValue(Object value)
:是否包含指定的valueint size():
返回map中key-value对的个数boolean isEmpty()
:判断当前map是否为空boolean equals(Object obj)
:判断当前map和参数对象obj是否相等
元视图操作的方法:Set keySet()
:返回所有key构成的Set集合Collection values()
:返回所有value构成的Collection集合Set entrySet()
:返回所有key-value对构成的Set集合
1.2 Map的实现类的结构:
Map:双列数据,存储key-value对的数据—类似于高中的函数: y = f(x)
---->HashMap:作为map的主要实现类;线程不安全的,效率高;存储null的key和value
---------->linkedHasnMap:保证在遍历map元素时,可以按照添加的顺序实现遍历。
原因:在原有的HashMap底层结构基础上,添加了一对指针,指向前一个和后一个元素。对于频繁的遍历操作,此类执行效率高于HashMap 。
---->TreeMap:保证按照添加的hey-value对进行排序,实现排序遍历。此时考虑key的自然排序或定制排序
底层使用红黑树
---->Hashtable:作为古老的实现类,线程安全的,效率低;不能存储nuLL的key和value’/ ----------------------->Properties:常用来处理配置文件。key和vaLue都是String类型
HashMap的底层:数组+链表(jdk7及之前)
数组+链表+红黑树(jdk 8)
二、Map实现类HashMap
Map实现类之一:HashMap
- HashMap是 Map 接口使用频率最高的实现类。
- 允许使用null键和null值,与HashSet一样,不保证映射的顺序。
- 所有的key构成的集合是Set:无序的、不可重复的。所以,key所在的类要重写:
equals()和hashCode() - 所有的value构成的集合是Collection:无序的、可以重复的。所以,value所在的类
要重写:equals() - 一个key-value构成一个entry
- 所有的entry构成的集合是Set:无序的、不可重复的
- HashMap 判断两个 key 相等的标准是:两个 key 通过 equals() 方法返回 true,
hashCode 值也相等。 - HashMap 判断两个 value相等的标准是:两个 value 通过 equals() 方法返回 true。
2.1 HashMap源码分析
2.1.1 HashMap源码中的重要常量
DEFAULT_INITIAL_CAPACITY : HashMap的默认容量,16
MAXIMUM_CAPACITY : HashMap的最大支持容量,2^30
DEFAULT_LOAD_FACTOR:HashMap的默认加载因子
TREEIFY_THRESHOLD:Bucket中链表长度大于该默认值,转化为红黑树
UNTREEIFY_THRESHOLD:Bucket中红黑树存储的Node小于该默认值,转化为链表
MIN_TREEIFY_CAPACITY:桶中的Node被树化时最小的hash表容量。(当桶中Node的
数量大到需要变红黑树时,若hash表容量小于MIN_TREEIFY_CAPACITY时,此时应执行
resize扩容操作这个MIN_TREEIFY_CAPACITY的值至少是TREEIFY_THRESHOLD的4
倍。)
table:存储元素的数组,总是2的n次幂
entrySet:存储具体元素的集
size:HashMap中存储的键值对的数量
modCount:HashMap扩容和结构改变的次数。
threshold:扩容的临界值,=容量*填充因子
loadFactor:填充因子
2.1.2 HashMap的存储结构
JDK 7及以前版本:HashMap是数组+链表结构(即为链地址法)
JDK 8版本发布以后:HashMap是数组+链表+红黑树实现。
2.1.3 源码解析
jdk7源码分析:
/**
* The table, resized as necessary. Length MUST Always be a power of two.
*/
transient Entry[] table;
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
final int hash;
}
可以看出,Entry 就是数组中的元素,每个 Map.Entry 其实就是一个 key-value 对,它
持有一个指向下一个元素的引用,这就构成了链表
存储:
public V put(K key, V value) {
// HashMap 允许存放 null 键和 null 值。
// 当 key 为 null 时,调用 putForNullKey 方法,将 value 放置在数组第一个位置。
if (key == null)
return putForNullKey(value);
// 根据 key 的 keyCode 重新计算 hash 值。
int hash = hash(key.hashCode());
// 搜索指定 hash 值在对应 table 中的索引。
int i = indexFor(hash, table.length);
// 如果 i 索引处的 Entry 不为 null,通过循环不断遍历 e 元素的下一个元素。
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
// 如果 i 索引处的 Entry 为 null,表明此处还没有 Entry。
modCount++;
// 将 key、value 添加到 i 索引处。
addEntry(hash, key, value, i);
return null;
}
从上面的源代码中可以看出:当我们往 HashMap 中 put 元素的时候,先根据 key 的
hashCode 重新计算 hash 值,根据 hash 值得到这个元素在数组中的位置(即下标),如果数组该位置上已经存放有其他元素了,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。如果数组该位置上没有元素,就直接将该元素放到此数组中的该位置上。addEntry(hash, key, value, i)方法根据计算出的 hash 值,将 key-value 对放在数组 table的 i 索引处。addEntry 是 HashMap 提供的一个包访问权限的方法,代码如下:
void addEntry(int hash, K key, V value, int bucketIndex) {
// 获取指定 bucketIndex 索引处的 Entry
Entry<K,V> e = table[bucketIndex];
// 将新创建的 Entry 放入 bucketIndex 索引处,并让新的 Entry 指向原来的 Entry
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
// 如果 Map 中的 key-value 对的数量超过了极限
if (size++ >= threshold)
// 把 table对象的长度扩充到原来的 2 倍。
resize(2 * table.length);
}
jdk8源码分析:
//默认的初始容量为 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//最大的容量上限为 2^30
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认的负载因子为 0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
尚硅谷 Java 高级编程 宋红康
//变成树型结构的临界值为 8
static final int TREEIFY_THRESHOLD = 8;
//恢复链式结构的临界值为 6
static final int UNTREEIFY_THRESHOLD = 6;
//哈希表
transient Node<K,V>[] table;
//哈希表中键值对的个数
transient int size;
//哈希表被修改的次数
transient int modCount;
//它是通过 capacity*load factor 计算出来的,当 size 到达这个值时,就会进行扩容操作
int threshold;
//负载因子
final float loadFactor;
//当哈希表的大小超过这个阈值,才会把链式结构转化成树型结构,否则仅采取扩容来尝试减少冲突
static final int MIN_TREEIFY_CAPACITY = 64;
/*下面是 Node 类的定义,它是 HashMap 中的一个静态内部类,哈希表中的每一个
节点都是 Node 类型。我们可以看到,Node 类中有 4 个属性,其中除了 key 和
value 之外,还有 hash 和 next 两个属性。hash 是用来存储 key 的哈希值的,next
是在构建链表时用来指向后继节点的。*/
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + valu
e; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(val
ue);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
get()方法
//get 方法主要调用的是 getNode 方法,所以重点要看 getNode 方法的实现
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null
: e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//如果哈希表不为空 && key 对应的桶上不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//是否直接命中
if (first.hash == hash && // always check first n
ode
((k = first.key) == key || (key != null && ke
y.equals(k))))
return first;
//判断是否有后续节点
if ((e = first.next) != null) {
//如果当前的桶是采用红黑树处理冲突,则调用红黑树的 get 方法去获取节点
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode
(hash, key);
//不是红黑树的话,那就是传统的链式结构了,通过循环的方法判断链中是否存在该 key
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null &&
key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
实现步骤大致如下:
1、通过 hash 值获取该 key 映射到的桶。
2、桶上的 key 就是要查找的 key,则直接命中。
3、桶上的 key 不是要查找的 key,则查看后续节点:
(1)如果后续节点是树节点,通过调用树的方法查找该 key。
(2)如果后续节点是链式节点,则通过循环遍历链查找该 key。
put方法
//put 方法的具体实现也是在 putVal 方法中,所以我们重点看下面的 putVal 方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIf
Absent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果哈希表为空,则先创建一个哈希表
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//如果当前桶没有碰撞冲突,则直接把键值对插入,完事
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
//如果桶上节点的 key 与当前 key 重复,那你就是我要找的节点了
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equ
als(k))))
e = p;
//如果是采用红黑树的方式处理冲突,则通过红黑树的 putTreeVal 方法去插入这个键值对
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab,
hash, key, value);
//否则就是传统的链式结构
else {
//采用循环遍历的方式,判断链中是否有重复的 key
for (int binCount = 0; ; ++binCount) {
//到了链尾还没找到重复的 key,则说明 HashMap 没有包含该键
if ((e = p.next) == null) {
//创建一个新节点插入到尾部
p.next = newNode(hash, key, value, nul
l);
//如果链的长度大于 TREEIFY_THRESHOLD 这个临界值,则把链变为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1)
// -1 for 1st
treeifyBin(tab, hash);
break;
}
//找到了重复的 key
if (e.hash == hash &&
((k = e.key) == key || (key != null &&
key.equals(k))))
break;
p = e;
}
}
//这里表示在上面的操作中找到了重复的键,所以这里把该键的值替换为新值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//判断是否需要进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
put 方法比较复杂,实现步骤大致如下:
1、先通过 hash 值计算出 key 映射到哪个桶。
2、如果桶上没有碰撞冲突,则直接插入。
3、如果出现碰撞冲突了,则需要处理冲突:
(1)如果该桶使用红黑树处理冲突,则调用红黑树的方法插入。
(2)否则采用传统的链式方法插入。如果链的长度到达临界值,则把链转变为红黑树。
4、如果桶中存在重复的键,则为该键替换新值。
5、如果 size 大于阈值,则进行扩容。
三、TreeMap
TreeMap存储 Key-Value 对时,需要根据 key-value 对进行排序。
TreeMap 可以保证所有的 Key-Value 对处于有序状态。
- TreeSet底层使用红黑树结构存储数据
- TreeMap 的 Key 的排序:
- 自然排序:TreeMap 的所有的 Key 必须实现 Comparable 接口,而且所有的 Key 应该是同一个类的对象,否则将会抛出 ClasssCastException
- 定制排序:创建 TreeMap 时,传入一个 Comparator 对象,该对象负责对TreeMap 中的所有 key 进行排序。此时不需要 Map 的 Key 实现Comparable 接口
- TreeMap判断两个key相等的标准:两个key通过compareTo()方法或者compare()方法返回0。
四、Hashtable
Hashtable是个古老的 Map 实现类,JDK1.0就提供了。不同于HashMap,
Hashtable是线程安全的。
- Hashtable实现原理和HashMap相同,功能相同。底层都使用哈希表结构,查询
速度快,很多情况下可以互用。 与HashMap不同,Hashtable 不允许使用 null 作为 key 和 value - 与HashMap一样,Hashtable 也不能保证其中 Key-Value 对的顺序
- Hashtable判断两个key相等、两个value相等的标准,与HashMap一致。
五、Properties
Properties 类是 Hashtable 的子类,该对象用于处理属性文件
- 由于属性文件里的 key、value 都是字符串类型,所以 Properties 里的 key 和 value 都是字符串类型
- 存取数据时,建议使用
setProperty(String key,String value)
方法和getProperty(String key)
方法.
Properties pros = new Properties();
pros.load(new FileInputStream("jdbc.properties"));
String user = pros.getProperty("user");
System.out.println(user);