分库分表(四)----Sharding JDBC的快速入门

一.需求说明

本章节使用Sharding-JDBC完成对订单表的水平分表,通过快速入门程序的开发,快速体验Sharding-JDBC的使用 方法。

人工创建两张表,t_order_1和t_order_2,这两张表是订单表拆分后的表,通过Sharding-Jdbc向订单表插入数据, 按照一定的分片规则,主键为偶数的进入t_order_1,另一部分数据进入t_order_2,通过Sharding-Jdbc 查询数 据,根据 SQL语句的内容从t_order_1或t_order_2查询数据。

二.环境搭建

2.1环境说明

  • 操作系统:Win10
  • 数据库:MySQL-5.7.25
  • JDK:64位 jdk1.8.0_201
  • 应用框架:spring-boot-2.1.3.RELEASE,Mybatis3.5.0
  • Sharding-JDBC:sharding-jdbc-spring-boot-starter-4.0.0-RC1

2.2创建数据库

创建订单库order_db

CREATE DATABASE `order_db` CHARACTER SET 'utf8' COLLATE 'utf8_general_ci';

在order_db中创建t_order_1、t_order_2表

DROP TABLE
IF
	EXISTS `t_order_1`;
CREATE TABLE `t_order_1` (
	`order_id` BIGINT ( 20 ) NOT NULL COMMENT '订单id',
	`price` DECIMAL ( 10, 2 ) NOT NULL COMMENT '订单价格',
	`user_id` BIGINT ( 20 ) NOT NULL COMMENT '下单用户id',
	`status` VARCHAR ( 50 ) CHARACTER 
	SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '订单状态',
	PRIMARY KEY ( `order_id` ) USING BTREE 
) ENGINE = INNODB CHARACTER 
SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
DROP TABLE
IF
	EXISTS `t_order_2`;
CREATE TABLE `t_order_2` (
	`order_id` BIGINT ( 20 ) NOT NULL COMMENT '订单id',
	`price` DECIMAL ( 10, 2 ) NOT NULL COMMENT '订单价格',
	`user_id` BIGINT ( 20 ) NOT NULL COMMENT '下单用户id',
	`status` VARCHAR ( 50 ) CHARACTER 
	SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '订单状态',
	PRIMARY KEY ( `order_id` ) USING BTREE 
) ENGINE = INNODB CHARACTER 
SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

2.3引入maven依赖

引入 sharding-jdbc和SpringBoot整合的Jar包:

<dependency>
      <groupId>org.apache.shardingsphere</groupId>
      <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
 </dependency>

以及数据库,mybatis的依赖

       <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
        </dependency>

        <dependency>
            <groupId>org.mybatis.spring.boot</groupId>
            <artifactId>mybatis-spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid-spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
        </dependency>

2.4编写程序

2.4.1分片规则配置

分片规则配置是sharding-jdbc进行对分库分表操作的重要依据,配置内容包括:数据源,主键生成策略,分片策略等
在application.properties中配置

#sharding-jdbc分片规则配置
#(1)数据源
spring.shardingsphere.datasource.names = m1

spring.shardingsphere.datasource.m1.type = com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.m1.driver-class-name = com.mysql.jdbc.Driver
spring.shardingsphere.datasource.m1.url = jdbc:mysql://localhost:3306/order_db?useUnicode=true
spring.shardingsphere.datasource.m1.username = root
spring.shardingsphere.datasource.m1.password = admin

# 指定t_order表的数据分布情况,配置数据节点 m1.t_order_1,m1.t_order_2
spring.shardingsphere.sharding.tables.t_order.actual-data-nodes = m1.t_order_$->{1..2}

#(2)主键生成策略,指定t_order表的主键生成策略为SNOWFLAKE
spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id  
spring.shardingsphere.sharding.tables.t_order.key-generator.type=SNOWFLAKE

#(3)分片策略,分片策略包括分片键和分片算法
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.sharding-column = order_id
spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.algorithm-expression = t_order_$->{order_id % 2 + 1}
#(4)springboot的其他设置
server.port=56081

spring.application.name = sharding-jdbc-simple-demo

server.servlet.context-path = /sharding-jdbc-simple-demo
spring.http.encoding.enabled = true
spring.http.encoding.charset = UTF-8
spring.http.encoding.force = true

spring.main.allow-bean-definition-overriding = true

mybatis.configuration.map-underscore-to-camel-case = true
# 打开sql输出日志
spring.shardingsphere.props.sql.show = true


swagger.enable = true

logging.level.root = info
logging.level.org.springframework.web = info
logging.level.com.itheima.dbsharding  = debug
logging.level.druid.sql = debug

1.首先定义数据源m1,并对m1进行实际的参数配置
2.指定t_order表的数据分布情况,他分布在m1.t_order_1,m1.t_order_2
3.指定t_order表的主键生成策略为SNOWFLAKE,SNOWFLAKE是一种分布式自增算法,保证id全局唯一
4.定义t_order分片策略,order_id为偶数的数据落在t_order_1,为奇数的落在t_order_2,分表策略的表达式为 t_order_$->{order_id % 2 + 1}

2.4.2数据操作

package com.itheima.dbsharding.simple.dao;

import org.apache.ibatis.annotations.Insert;
import org.apache.ibatis.annotations.Mapper;
import org.apache.ibatis.annotations.Param;
import org.apache.ibatis.annotations.Select;
import org.springframework.stereotype.Component;

import java.math.BigDecimal;
import java.util.List;
import java.util.Map;

@Mapper
@Component
public interface OrderDao {

    /**
     * 插入订单
     * @param price
     * @param userId
     * @param status
     * @return
     */
    @Insert("insert into t_order(price,user_id,status)values(#{price},#{userId},#{status})")
    int insertOrder(@Param("price")BigDecimal price,@Param("userId")Long userId,@Param("status")String status);

    /**
     * 根据id列表查询订单
     * @param orderIds
     * @return
     */
    @Select("<script>" +
            "select" +
            " * " +
            " from t_order t " +
            " where t.order_id in " +
            " <foreach collection='orderIds' open='(' separator=',' close=')' item='id'>" +
            " #{id} " +
            " </foreach>" +
            "</script>")
    List<Map> selectOrderbyIds(@Param("orderIds") List<Long> orderIds);
}

2.4.3测试

package com.itheima.dbsharding.simple.dao;

import org.apache.ibatis.annotations.Insert;
import org.apache.ibatis.annotations.Mapper;
import org.apache.ibatis.annotations.Param;
import org.apache.ibatis.annotations.Select;
import org.springframework.stereotype.Component;

import java.math.BigDecimal;
import java.util.List;
import java.util.Map;

@Mapper
@Component
public interface OrderDao {

    /**
     * 插入订单
     * @param price
     * @param userId
     * @param status
     * @return
     */
    @Insert("insert into t_order(price,user_id,status)values(#{price},#{userId},#{status})")
    int insertOrder(@Param("price")BigDecimal price,@Param("userId")Long userId,@Param("status")String status);

    /**
     * 根据id列表查询订单
     * @param orderIds
     * @return
     */
    @Select("<script>" +
            "select" +
            " * " +
            " from t_order t " +
            " where t.order_id in " +
            " <foreach collection='orderIds' open='(' separator=',' close=')' item='id'>" +
            " #{id} " +
            " </foreach>" +
            "</script>")
    List<Map> selectOrderbyIds(@Param("orderIds") List<Long> orderIds);
}

执行testInsertOrder:
分库分表(四)----Sharding JDBC的快速入门
通过日志可以发现order_id为奇数的被插入到t_order_2表,为偶数的被插入到t_order_1表,达到预期目标。
执行testSelectOrderbyIds:
分库分表(四)----Sharding JDBC的快速入门
通过日志可以发现,根据传入order_id的奇偶不同,sharding-jdbc分别去不同的表检索数据,达到预期目标。

2.5.流程分析

通过日志分析,Sharding-JDBC在拿到用户要执行的sql之后干了哪些事儿:
(1)解析sql,获取片键值,在本例中是order_id
(2)Sharding-JDBC通过规则配置 t_order_$->{order_id % 2 + 1},知道了当order_id为偶数时,应该往 t_order_1表插数据,为奇数时,往t_order_2插数据。
(3)于是Sharding-JDBC根据order_id的值改写sql语句,改写后的SQL语句是真实所要执行的SQL语句。
(4)执行改写后的真实sql语句
(5)将所有真正执行sql的结果进行汇总合并,返回。

上一篇:Mysql中间件系列Sharding-Sphere 之 Sharding-JDBC 快速入门


下一篇:springboot sharding-jdbc分库分表