Educational Codeforces Round 89 题解

昨晚简单 vp 了场比赛找了找状态,切了 5 个题(有一个差点调出来),rk57,还算理想吧,毕竟我已经好久没碰过电脑了(

A

签到题不多说,直接输出 \(\min\{a,b,\dfrac{a+b}{3}\}\) 即可

B

对于每次操作维护一个区间 \([l,r]\) 表示有可能是 \(1\) 的位置组成的集合(显然是一个区间),初始 \(l=r=x\),每次操作如果 \([l,r]\) 和操作的区间有交那么取个并即可,复杂度线性

C

开个桶记录下到 \((1,1)\) 距离为 \(1,2,3,\cdots,n+m-1\) 的点中分别有多少个 \(0,1\),然后在对称的位置里面取 \(\min\) 相加即可,复杂度线性

D

如果 \(n\) 可以表示成 \(p^{\alpha}\) 的形式,其中 \(p\) 是质数,\(\alpha\) 是整数,那么答案就是 \(-1\),否则记 \(mnp_x\) 为 \(x\) 的最小质因子,\(\beta\) 为 \(mnp_n\) 在 \(n\) 的质因数分解形式中的最大因子,那么 \(\dfrac{n}{p^{\beta}},mnp_{\dfrac{n}{p^{\beta}}}\) 符合条件

E

对于每一段二分找出这一段可能的左端点、右端点,然后乘法原理乘起来即可,二分检验可用 ST 表

F

这道题还蛮有意思的,比赛最后几分钟肝出来了,却因为爆 int 一直 WA 8,赛后 2min 把它 A 掉了……
首先注意到图中每个简单路径的长度都 \(\le m\),因此当 \(k\) 比较大(\(>m\))组成的路径肯定不是简单路径,故不难猜出当 \(k\) 比较大时最优方案是先走到某条边 \(e\) 的一个端点处,然后在这条边上来回走动,在这种情况下每过一秒经过的长度 \(\Delta l\) 都等于这条边的边权 \(w\),因此这条边经过的路径长度可以写成一个与时间 \(t\) 有关的一次函数 \(y=wt+b(t\ge t_0)\),其中 \(t_0\) 为到达这条边的时间。
受到这个思想的启发,我们可以先暴力 \(dp\) 求出当 \(k\le m\) 时以每个点结束的最短路径,这部分的贡献我们特殊处理一下,特判掉。对于 \(k>m\) 的部分我们就暴力枚举是哪条边,以及到达这条边的时间 \(t_0\),这样有 \(n^2\) 条直线(或者准确来说,是一条射线),求出它们的凸壳即可,复杂度 \(n^2\log n\) 可以通过。当然这里也有一个非常 trival 的优化,不难发现同一条边,对于不同的 \(t_0\),它们表示的直线的斜率是相同的,我们只需保留截距最大的那条即可。这样建凸包的时间可以降到 \(n\log n\),总复杂度 \(nm+n\log n\)。

G

这道题倒感觉不如 F 有意思,虽然我现场并没有想到正解,可能是我 \(dp\) 太菜了吧
一个很显然的思路是设 \(dp_{i,j}\) 表示考虑了前 \(i\) 位,现在匹配到第 \(j\) 位的最小删除字符个数。这一步我倒是想到了,然鹅我只想到了线性的转移,看来还是 wtcl 了啊……
事实上这个状态可以实现 \(\mathcal O(1)\) 转移:

  • \(dp_{i+1,j}\leftarrow dp_{i,j}+1\)
  • \(dp_{i+1,j+1}\leftarrow dp_{i,j}(s_{i+1}=t_{j+1})\)
  • \(dp_{nxt_i,j}\leftarrow dp_{i,j}\)(其中 \(nxt_i\) 为从 \(i\) 开始,如果把小写字母当作左括号,点当作右括号,第一个达到括号平衡的位置)

时空复杂度均平方。

上一篇:Java简单冒泡排序


下一篇:Ambari集成Kerberos报错汇总