cv2.matchTemplate()函数的应用,匹配图片后画出矩形

import cv2 as cv
import numpy as np


"""
matchTemplate():
参数image:待搜索的图像(大图)
参数temple:搜索模板,需要和原图一样的数据类型且尺寸不能大于源图像
参数result:比较结果的映射图像,其必须为单通道,32位浮点型图像,如果原图(待搜索图像)尺寸为W*H,而temple尺寸为w*h,则result尺寸一定是
    (W-w+1)*(H-h+1)
参数method:指定匹配方法,有如下几种:
    CV_TM_SQDIFF:平方差匹配法
    CV_TM_SQDIFF_NORMED:归一化平方差匹配法
    CV_TM_CCORR:相关匹配法
    CV_TM_CCORR_NORMED:归一化相关匹配法
    CV_TM_CCOEFF:系数匹配法
    CV_TM_CCOEFF_NORMED:化相关系数匹配法
"""
"""
minMaxLoc()函数
作用:一维数组当作向量,寻找矩阵中最小值和最大值位置
"""

def match_image():
    target = cv.imread(r"C:\Users\lenovo\Desktop\test\2.jpg")
    temple = cv.imread(r"C:\Users\lenovo\Desktop\test\1.png")
    # shape是获取矩阵的长度
    print(temple.shape)
    # 获取到小图的尺寸
    th, tw = temple.shape[:2]
    result = cv.matchTemplate(target, temple, cv.TM_SQDIFF_NORMED)
    # 返回匹配的最小坐标
    min_val, max_val, min_loc, max_loc = cv.minMaxLoc(result)
    tl=min_loc
    print(tl)
    br = (int(tl[0]) + tw, int(tl[1]) + th)
    print('br==',br)
    cv.rectangle(target, tl, br, [0, 255, 0])
    cv.imshow("匹配结果" + np.str(cv.TM_SQDIFF_NORMED), target)


match_image()
cv.waitKey(0)
cv.destroyAllWindows()

 

上一篇:使用python进行数据清洗及ols回归分析


下一篇:sklearn——转换器(Transformer)与预估器(estimator)