from sklearn.datasets import load_boston from sklearn.linear_model import LinearRegression, SGDRegressor from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error from sklearn.linear_model import Ridge import joblib def mylinear(): """ 线性回归直接预测房子的价格 :return: None """ #获取数据 lb = load_boston() #分割数据集到训练集和测试集 x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25) print(y_train, y_test) #进行标准化处理 目标值是否需要进行标准化处理? #特征值和目标值都需要进行标准化处理 实例化两个标准化API std_x = StandardScaler() x_train = std_x.fit_transform(x_train) x_test = std_x.transform(x_test) #目标值 标准化 std_y = StandardScaler() y_train = std_y.fit_transform(y_train.reshape(-1, 1)) y_test = std_y.transform(y_test.reshape(-1, 1)) #预测房价结果 model = joblib.load("./tmp/test.pkl") y_predict = std_y.inverse_transform(model.predict(x_test)) print("保存的模型预测的结果:", y_predict) # #estimator预测 # #正规方程求解方程预测结果(线性回归) # lr = LinearRegression() # lr.fit(x_train, y_train) # print(lr.coef_) #打印权重参数--回归系数 # #保存训练好的模型 # joblib.dump(lr, "./tmp/test.pkl") # #预测测试集的房子价格 # y_lr_predict = std_y.inverse_transform(lr.predict(x_test)) # print("正规方程测试集每个房子的预测价格:", y_lr_predict) # print("正规方程的均方误差", mean_squared_error(std_y.inverse_transform(y_test), y_lr_predict)) # #梯度下降进行房价预测 # sgd = SGDRegressor() # # sgd.fit(x_train, y_train) # # print(sgd.coef_) # 打印权重参数--回归系数 # # # 预测测试集的房子价格 # y_sgd_predict = std_y.inverse_transform(sgd.predict(x_test)) # # print("梯度下降测试集每个房子的预测价格:", y_sgd_predict) # print("梯度下降的均方误差", mean_squared_error(std_y.inverse_transform(y_test), y_sgd_predict)) # # # 通过岭回归进行房价预测 # rd = Ridge(alpha=1.0) # # rd.fit(x_train, y_train) # # print(rd.coef_) # 打印权重参数--回归系数 # # # 预测测试集的房子价格 # y_rd_predict = std_y.inverse_transform(rd.predict(x_test)) # # print("岭回归测试集每个房子的预测价格:", y_rd_predict) # print("岭回归下降的均方误差", mean_squared_error(std_y.inverse_transform(y_test), y_rd_predict)) return None if __name__ == "__main__": mylinear()