Problem:
Given a non-negative integer num
, repeatedly add all its digits until the result has only one digit.
For example:
Given num = 38
, the process is like: 3 + 8 = 11
, 1 + 1 = 2
. Since 2
has only one digit, return it.
Follow up:
Could you do it without any loop/recursion in O(1) runtime?
此题最初想法是相加、判断反复循环直到找到满足的解。通过参考别人的解答发现,此题是让我们求“数根”。
由此解法一为通过循环相加判断,直到找到可行解:
class Solution
{
public:
int addDigits(int num)
{
int add = ;
while (num >= )
{ while(num > )
{
add += num % ;
num /= ;
}
num = add;
}
return num;
}
};
但是由于时间复杂度超过题目要求,故考虑针对“数根”的解法。
通过枚举可知:
10 1+0 = 1
11 1+1 = 2
12 1+2 = 3
13 1+3 = 4
14 1+4 = 5
15 1+5 = 6
16 1+6 = 7
17 1+7 = 8
18 1+8 = 9
19 1+9 = 1
20 2+0 = 2
于是可得出规律,每9个一循环。为处理9的倍数的情况,我们写为(n - 1) % 9 + 1。由此可得:
class Solution
{
public:
int addDigits(int num)
{
return (num - ) % + ;
}
};