You are given an integer array nums
and an integer target
.
You want to build an expression out of nums by adding one of the symbols '+'
and '-'
before each integer in nums and then concatenate all the integers.
- For example, if
nums = [2, 1]
, you can add a'+'
before2
and a'-'
before1
and concatenate them to build the expression"+2-1"
.
Return the number of different expressions that you can build, which evaluates to target
.
Example 1:
Input: nums = [1,1,1,1,1], target = 3 Output: 5 Explanation: There are 5 ways to assign symbols to make the sum of nums be target 3. -1 + 1 + 1 + 1 + 1 = 3 +1 - 1 + 1 + 1 + 1 = 3 +1 + 1 - 1 + 1 + 1 = 3 +1 + 1 + 1 - 1 + 1 = 3 +1 + 1 + 1 + 1 - 1 = 3
Example 2:
Input: nums = [1], target = 1 Output: 1
Constraints:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
目标和。
给你一个整数数组 nums 和一个整数 target 。
向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :
例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/target-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
这道题是一道动态规划中经典的背包问题。这里我提供两种做法,一种是回溯,一种是动态规划。