Sumsets
Time Limit: 6000/2000 MS (Java/Others)
Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2159
Accepted Submission(s): 875
1) 1+1+1+1+1+1+1
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
题目大意:
输入一个整数,将这个数分解成不定个正数之和,要求这些数必须是2的k次方(k为大于等于0的正数).输出分的方法种数.(由于当输出整数过大时,种数很大只输出最后9位)
思路一:
设a[n]为和为 n 的种类数;
根据题目可知,加数为2的N次方,即 n 为奇数时等于它前一个数 n-1 的种类数 a[n-1] ,若 n 为偶数时分加数中有无 1 讨论,即关键是对 n 为偶数时进行讨论:
1.n为奇数,a[n]=a[n-1]
2.n为偶数:
(1)如果加数里含1,则一定至少有两个1,即对n-2的每一个加数式后面 +1+1,总类数为a[n-2];
(2)如果加数里没有1,即对n/2的每一个加数式乘以2,总类数为a[n/2];
所以总的种类数为:a[n]=a[n-2]+a[n/2];
#include <iostream>
using namespace std;
long i,a[];
int main()
{
a[] = ;
a[] = ;
for(i = ; i < ; i++)
{
if((i&) == )
{
a[i] = a[i-]; //i为奇数与它前一个数量相同
}
else
{
a[i] = (a[i-] + a[i>>]) % ; //含有1: a[i-1]每种情况填11、不含1: a[i/2]每种情况*2
}
}
while(cin >> i){
cout << a[i] << endl;
}
return ; }
思路二:DP思想
假如只能用1构成那么每个数的分的方法种数就是1.
如果这个时候能用 2 构成,那么对于大于等于 2 的数 n 就可以由 n - 2 和 2 构成 就转化为 求 n - 2 的种数那么就是 d [ n ] = d [ n-2 ] + d [ n ] (前面 d [ n-2 ] 表示数n可以由2构成的种数,后面加的 d [ n ] 表示数n只能由 1 构成的种数.)
那么状态转移方程式子就出来了(c [ n ] = 2^n)
d [ n ] [ k ] = d [ n ] [ k - 1 ] + d [ n - c [ k ] ] [ k ] ;
循环降维:
d [ n ] = d [ n ] + d [ n - c [ k ] ] ;
#include<iostream>
#include<cstring>
using namespace std;
long d[],c[],n,i,j;
int main()
{
while(cin >> n)
{
memset(d,,sizeof(d));
c[]=d[]=;
for(i=;i<=;i++)
c[i]=c[i-]<<;
for(i=;i<=&&c[i]<=n;i++)
for(j=c[i];j<=n;j++)
d[j]=(d[j]+d[j-c[i]])%;
cout << d[n] << endl;
}
return ;
}