「算法笔记」快速数论变换(NTT)

一、简介

前置知识:多项式乘法与 FFT

FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差。快速数论变换(Number Theoretic Transform,简称 NTT)在 FFT 的基础上,优化了常数及误差。

NTT 其实就是把 FFT 中的单位根换成了原根。

NTT 解决的是多项式乘法带模数的情况,可以说有些受模数的限制,多项式系数应为整数。

二、原根 与 NTT

「算法笔记」基础数论 2 中提及了原根的部分内容。

对于质数 \(p\),若 \(g\) 为 \(p\) 的原根,则 \(g^i\bmod p\,(0\leq i<p)\) 互不相同。

考虑可以表示为 \(p=a\cdot 2^k+1\) 的质数 \(p\)。NTT 的模数一般选取这样符合要求的 \(p\)。比较常见的 \(p\) 有 \(998244353=119\cdot 2^{23}+1\)、\(1004535809=479\cdot 2^{21}+1\),它们的原根都是 \(3\)。

NTT 与 FFT 几乎一样,只不过 FFT 中代入的是 \(\omega_n^k\),而 NTT 中代入的是 \({(g^{\frac{p-1}{n}})}^k\)。

\({(g^{\frac{p-1}{n}})}^k\) 满足 FFT 中所用到的 \(\omega_n^k\) 拥有的性质。

结论:\(\omega_n^k\equiv {(g^{\frac{p-1}{n}})}^k\pmod p\),可以把 \({(g^{\frac{p-1}{n}})}^k\) 看成是 \(\omega_n^k\) 的等价。证明略。

由于 \(p\) 可以表示为 \(p=a\cdot 2^k+1\) 的形式,并且多项式项数 \(n\) 已被我们补为 \(2\) 的幂次,所以 \(\frac{p-1}{n}\) 一定为整数(注意 \(n\leq 2^k\),不然会出问题)。

代码只需在 FFT 的基础上稍作修改即可。复杂度同样为 \(\mathcal{O}(n\log n)\)。

//Luogu P3803
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=3e6+5,mod=998244353;
int n,m,a[N],b[N],len,r[N],inv;
int mul(int x,int n,int mod){
int ans=mod!=1;
for(x%=mod;n;n>>=1,x=x*x%mod)
if(n&1) ans=ans*x%mod;
return ans;
}
void NTT(int a[N],int n,int opt){ //opt=1/-1: DFT/IDFT
for(int i=0;i<n;i++)
if(i<r[i]) swap(a[i],a[r[i]]);
for(int k=2;k<=n;k<<=1){
int m=k>>1,x=mul(3,(mod-1)/k,mod),w=1,v;
if(opt==-1) x=mul(x,mod-2,mod);
for(int i=0;i<n;i+=k,w=1)
for(int j=i;j<i+m;j++) v=w*a[j+m]%mod,a[j+m]=(a[j]-v+mod)%mod,a[j]=(a[j]+v)%mod,w=w*x%mod;
}
if(opt==-1){
inv=mul(len,mod-2,mod);
for(int i=0;i<n;i++) a[i]=a[i]*inv%mod;
}
}
signed main(){
scanf("%lld%lld",&n,&m);
for(int i=0;i<=n;i++)
scanf("%lld",&a[i]);
for(int i=0;i<=m;i++)
scanf("%lld",&b[i]);
n=n+m+1;
for(len=1;len<n;len<<=1);
for(int i=0;i<len;i++)
r[i]=(r[i>>1]>>1)|((i&1)?len>>1:0);
NTT(a,len,1),NTT(b,len,1);
for(int i=0;i<len;i++) a[i]=a[i]*b[i]%mod;
NTT(a,len,-1);
for(int i=0;i<n;i++)
printf("%lld%c",a[i],i==n-1?'\n':' ');
return 0;
}

Update:改了改后的板子→link

上一篇:模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)


下一篇:Buffer、Channel示例