glmnet包做线性回归

install.packages(“glmnet”)
library(glmnet)
library(survival)
setwd(“C:\Users\TD\Desktop”)
inputfile=“id0.05exp.txt”
lncRNA<-read.table(inputfile,header=T,sep="\t",row.names = 1,check.names = F,stringsAsFactors = F)
set.seed(123456)
v1<-as.matrix(lncRNA[,c(3:ncol(lncRNA))])
v2 <- as.matrix(Surv(lncRNA S u r v i v a l m o n t h s , l n c R N A Survival_months,lncRNA Survivalm​onths,lncRNASurvival_status))

myfit2 <- cv.glmnet(v1, v2, family=“cox”)
#pdf(“min.pdf”) #将图片写入到pdf中
plot(myfit2)
abline(v=log(c(myfit2 l a m b d a . m i n , m y f i t 2 lambda.min,myfit2 lambda.min,myfit2lambda.1se)),lty=“dashed”)
#dev.off() # 关闭图片,图片保存到pdf中
glmnet包做线性回归

myfit2 l a m b d a . m i n m y f i t &lt; − g l m n e t ( v 1 , v 2 , f a m i l y = &quot; c o x &quot; ) c o e &lt; − c o e f ( m y f i t , s = m y f i t 2 lambda.min myfit &lt;- glmnet(v1, v2, family = &quot;cox&quot;) coe &lt;- coef(myfit, s = myfit2 lambda.minmyfit<−glmnet(v1,v2,family="cox")coe<−coef(myfit,s=myfit2lambda.min)
act_index <- which(coe != 0)
act_coe <- coe[act_index]
row.names(coe)[act_index]
act_index

coe
myfit2
names(row.names(coe)[act_index])

#pdf(“lambda.pdf”) # 图片保存到pdf中
plot(myfit, xvar = “lambda”, label = TRUE)
#dev.off() #关闭图片保存

glmnet包做线性回归

参考学习来源:https://site.douban.com/182577/widget/notes/10567212/note/289294468/

上一篇:[PAT] A1002 A+B for Polynomials (23分!)


下一篇:1009 Product of Polynomials