题意
\(n\)个数\(a[i] ,q\)次询问,\(n,a[i],q<=10^5\)每次问\([l,r]\)内最多可以选多少个数,满足同一个数的出现次数不超过\(k\)
强制在线
Sol
处理出每个数往前数第\(k+1\)个与它相同的位置
没有则为\(0\)
那么就是求区间内所有的该值小于\(l\)的数
主席树来做就好了
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e5 + 5);
IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, k, rt[_], tot;
struct HJT{
int ls, rs, sz;
} T[_ * 20];
vector <int> num[_];
IL void Modify(RG int &x, RG int l, RG int r, RG int p){
T[++tot] = T[x], ++T[x = tot].sz;
if(l == r) return;
RG int mid = (l + r) >> 1;
if(p <= mid) Modify(T[x].ls, l, mid, p);
else Modify(T[x].rs, mid + 1, r, p);
}
IL int Query(RG int x, RG int l, RG int r, RG int p){
if(!x) return 0;
if(l == r) return T[x].sz;
RG int mid = (l + r) >> 1;
if(p <= mid) return Query(T[x].ls, l, mid, p);
return T[T[x].ls].sz + Query(T[x].rs, mid + 1, r, p);
}
int main(RG int argc, RG char* argv[]){
n = Input(), k = Input();
for(RG int i = 1, a, b; i <= n; ++i){
a = Input(), num[a].push_back(i);
RG int l = num[a].size();
if(l <= k) b = 0;
else b = num[a][l - k - 1];
rt[i] = rt[i - 1], Modify(rt[i], 0, n, b);
}
for(RG int q = Input(), ans = 0; q; --q){
RG int l = Input(), r = Input();
l = (l + ans) % n + 1, r = (r + ans) % n + 1;
if(l > r) swap(l, r);
printf("%d\n", ans = Query(rt[r], 0, n, l - 1) - Query(rt[l - 1], 0, n, l - 1));
}
return 0;
}