CF1146D Frog Jumping

CF1146D Frog Jumping

洛谷评测传送门

题目描述

A frog is initially at position 00 on the number line. The frog has two positive integers aa and bb . From a position kk , it can either jump to position k+ak+a or k-bkb .

Let f(x)f(x) be the number of distinct integers the frog can reach if it never jumps on an integer outside the interval [0, x][0,x] . The frog doesn't need to visit all these integers in one trip, that is, an integer is counted if the frog can somehow reach it if it starts from 00 .

Given an integer mm , find \sum_{i=0}^{m} f(i)∑i=0*m**f(i) . That is, find the sum of all f(i)f(i) for ii* from 00 to mm .

输入格式

The first line contains three integers m, a, bm,a,b ( 1 \leq m \leq 10^9, 1 \leq a,b \leq 10^51≤m≤109,1≤a,b≤105 ).

输出格式

Print a single integer, the desired sum.

题意翻译

yyb大神仙在数轴的00位置。yyb大神仙有两个正整数a,ba,b,如果当前yyb大神仙在位置kk,yyb大神仙可以用神仙的力量将自己传送到k+ak+a或者k-bkb位置。

但是yyb大神仙感觉这样很无聊所以打算将自己限制在一段区间里。f(x)f(x)表示yyb大神仙只能在[0,x][0,x]区间里移动,从00开始能到达的整点数量。yyb大神仙想求\sum_{i=0}^mf(i)∑i=0*m**f(i*)。

输入输出样例

输入 #1复制

输出 #1复制

输入 #2复制

输出 #2复制

输入 #3复制

输出 #3复制

输入 #4复制

输出 #4复制

说明/提示

In the first example, we must find f(0)+f(1)+\ldots+f(7)f(0)+f(1)+…+f(7) . We have f(0) = 1, f(1) = 1, f(2) = 1, f(3) = 1, f(4) = 1, f(5) = 3, f(6) = 3, f(7) = 8f(0)=1,f(1)=1,f(2)=1,f(3)=1,f(4)=1,f(5)=3,f(6)=3,f(7)=8 . The sum of these values is 1919 .

In the second example, we have f(i) = i+1f(i)=i+1 , so we want to find \sum_{i=0}^{10^9} i+1∑i=0109i+1 .

In the third example, the frog can't make any jumps in any case.

题解:

2019.10.28模拟赛T2 60分场

出题人@Winniechen的数据挺良心的(滑稽)

我很疑惑,为什么大佬们一开始都能想到找规律出正解。我一开始只能想到深搜,所以用一个差不多是\(O(n^2)\)的算法拿了\(10^3\)的分,假如数据是按上面说的:\(10^9\),这个算法得跑31年...

先贴一份代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#define int long long
using namespace std;
const int maxn=1e5+10;
int n,a,b,cnt,ans;
bool v[maxn];
void dfs(int pos,int l)
{
    if(pos<0 || pos>l || v[pos])
        return;
    v[pos]=1;
    cnt++;
    dfs(pos+a,l);
    dfs(pos-b,l);
}
signed main()
{
    scanf("%lld%lld%lld",&n,&a,&b);
    for(int i=0;i<=n;i++)
    {
        cnt=0;
        memset(v,0,sizeof(v));
        dfs(0,i);
        ans+=cnt;
    }
    printf("%lld",ans);
    return 0;
}

这就是编程的魅力,一再优化,你的31年,人家的一秒,这就是差距。国家实力就是这么被提升起来的。

接下来介绍正解:

根据我们手推样例,不难发现,会有一个路径让我们返回到出发点,这样的话就会开始循环跳来跳去。(其实这是我深搜的时候发现的),所以我们会发现一个性质:在一个区间中,如果有一个点能到达,那么这个点一定是\(\gcd(a,b)\)的倍数。

证明其实也好证:

假设我们向右跳了\(x\)次,向左跳了\(y\)次。那么就会存在一个点\(k\):
\[ ax+by=k \]
显然\(k\)一定是\(\gcd(a,b)\)的倍数。

那我们回头来求这个函数\(f(i)\),不难看出,当\(a>i\)的时候,总和就是\(a\),因为根本就动弹不了。

所以当\(n<a\)的时候就输出\(n+1\)即可(加的那个\(1\)代表\(f(0)\))。

否则我们一次性在答案上加\(a\)(一次性累加\(f(0)-f(a-1)\))。

然后我们在\([a,i]\)这个区间上寻找一个可以让路径回到出发点的点\(k\),这样的话我们就相当于处理出了一个临界值,之后的东西可以用刚才我们推出的规律处理。这个处理过程其实是一个模拟的过程,先一直往右跳,再一直往左跳,什么时候正好跳回来了就标记上(这个省略了标记的步骤,因为直接拿\(i\)记录了),最后加上跳跃的次数。

很显然,这种一次枚举跳很多步的时间复杂度是很优秀的。

这个时候跳出循环,然后按照我们发现的规律:所有可被到达的点都是\(\gcd(a,b)\)的倍数。这样处理出其他的点到\(n\)的情况。进行累加答案,输出即可。

代码:

#include<cstdio>
#define int long long
using namespace std;
int n,a,b,pos,i; 
int ans,tmp=1;
int gcd(int x,int y)
{
    return y?gcd(y,x%y):x; 
}
signed main()
{
    scanf("%lld%lld%lld",&n,&a,&b); 
    ans+=a;
    if(n<a) 
    {
        printf("%lld",n+1); 
        return 0; 
    }
    for(i=a;i;i++)
    {
        while(pos+a<=i)
        {
            tmp+=((i-pos)/a);
            pos+=((i-pos)/a)*a;
            tmp+=(pos/b); 
            pos%=b;
            if(!pos) 
                break;
        } 
        if(!pos) 
            break;
        ans+=tmp; 
        if(n==i) 
            break;
    }
    if(!pos)
    {
        int p=gcd(a,b); 
        int j=n-n%p;
        tmp=(int)(i+j)*(j/p-i/p+1)/2;
        tmp-=(int)(j+p-1-n)*(j/p);
        ans+=tmp+n-i+1;
    }
    printf("%lld",ans);
    return 0;
}
上一篇:Jumping on Walls CodeForces - 199D DFS


下一篇:Super Jumping! Jumping! Jumping!超级跳!跳!跳!