hdu 6975/ 2021“MINIEYE杯”中国大学生算法设计超级联赛(3)1003 Forgiving Matching(FFT)

https://acm.hdu.edu.cn/showproblem.php?pid=6975

 

题意:

给出2个串S和T,含有通配符。

若S的一个子串满足和T不匹配的位置<=k个,则认为S的这个子串与T是匹配的

对于k∈[0,|T|],回答S中有多少个子串与T匹配

 

解决这道问题首先要明白如何用FFT求解字符串匹配问题

可以看 https://www.cnblogs.com/TheRoadToTheGold/p/15128004.html

 

假设没有通配符

对于这个问题,我们可以求出S的每个长为|T|的子串与T的匹配位置有多少个

若有x个,那么对于S的这个长为|T|的子串,k要>=|T|-x,这个子串才能与T匹配

|T|-x是最小的满足要求的k,我们求最小的有多少个,做前缀和统计即可

如何求S的每个长为|T|的子串与T的匹配位置有多少个?

枚举c=0—9,S和T的对应位置是c,令其为1,不是c,令其为0,做FFT,即可求出这个字符c的匹配位置数量

所有的累加即可

 

加上通配符

简单容斥一下

那么匹配位置数量=不计算通配符的数量 + S的这个子串通配符数量 + T含有的通配符数量 - S的这个子串和T匹配的通配符数量

一个串的通配符数量用前缀和可以求

两个串对应匹配的通配符数量,还是FFT

 

#include<bits/stdc++.h>

using namespace std;

const int N=(1<<19)+3;
const double pi=acos(-1); 

char s[N],t[N];

int f[N];
int fs[N];

int ans[N];

int rev[N];

struct Complex
{
    double x,y;
    Complex(double x_=0,double y_=0):x(x_),y(y_){}
    Complex operator + (Complex P)
    {
        return Complex(x+P.x,y+P.y);
    }
    Complex operator - (Complex P)
    {
        return Complex(x-P.x,y-P.y);
    }
    Complex operator * (Complex P)
    {
        return Complex(x*P.x-y*P.y,x*P.y+y*P.x);
    }
};
typedef Complex E;

E a1[N],a2[N];

void fft(E *a,int len,int type)
{
    for(int i=0;i<len;++i)
        if(i<rev[i]) swap(a[i],a[rev[i]]);
    for(int i=1;i<len;i<<=1)
    {
        E wn(cos(pi/i),type*sin(pi/i));
        for(int p=i<<1,j=0;j<len;j+=p)
        {
            E w(1,0);
            for(int k=0;k<i;++k,w=w*wn)
            {
                E x=a[j+k],y=a[j+k+i]*w;
                a[j+k]=x+y; a[j+k+i]=x-y;
            }
        }
    }
    if(type==-1)
        for(int i=0;i<len;++i) a[i].x/=len;
}

void FFT(E *a,E *b,int len,int kk)
{
    fft(a,len,1);
    fft(b,len,1);
    for(int i=0;i<len;++i) a[i]=a[i]*b[i];
    fft(a,len,-1);
//    for(int i=0;i<len;++i) printf("%d ",(int)(a[i].x+0.5));
//    printf("\n\n\n");
    for(int i=0;i<len;++i) f[i]+=kk*((int)(a[i].x+0.5));
}

int main()
{
//    freopen("1003.in","r",stdin);
//    freopen("answew0.txt","w",stdout); 
//    printf("111111\n\n");
    int T,n,m,len,num,bit,tmp,ft;
    char c;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        scanf("%s",s);
        scanf("%s",t);
        reverse(t,t+m);
        num=m+n-1;
        len=1;
        bit=0;
        while(len<num) len<<=1,bit++;
        for(int i=0;i<len;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<bit-1);
        for(int i=0;i<len;++i) f[i]=0;
        for(int i=0;i<=10;++i)
        {
            c='0'+i;
            if(i==10) c='*';
            for(int j=0;j<len;++j) a1[j]=a2[j]=E(0,0);
            for(int j=0;j<n;++j) a1[j].x= s[j]==c ? 1 : 0;
            for(int j=0;j<m;++j) a2[j].x= t[j]==c ? 1 : 0;
            if(i!=10) FFT(a1,a2,len,1);
            else FFT(a1,a2,len,-1);
//            for(int j=0;j<n;++j) printf("%d ",f[j]);
//            printf("\n"); 
        }
        fs[0]= s[0]=='*' ? 1 : 0;
        for(int i=1;i<n;++i) fs[i]=fs[i-1]+(s[i]=='*');
        ft= t[0]=='*' ? 1 : 0;
        for(int i=1;i<m;++i) ft+=(t[i]=='*');
        fill(ans,ans+m+1,0);
        for(int i=0;i+m-1<n;++i)
        {
            tmp=f[i+m-1]+fs[i+m-1]-(i ? fs[i-1] : 0)+ft;
            ans[m-tmp]++;
        }
        for(int i=1;i<=m;++i) ans[i]+=ans[i-1];
        for(int i=0;i<=m;++i) printf("%d\n",ans[i]);
    }
}

 

上一篇:HDU 6988 Display Substring 后缀自动机,二分套二分


下一篇:HDU 5590学习别人的写法