BZOJ2783: [JLOI2012]树(树上前缀和+set)

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 1215  Solved: 768
[Submit][Status][Discuss]

Description

数列
提交文件:sequence.pas/c/cpp
输入文件:sequence.in
输出文件:sequence.out
问题描述:
把一个正整数分成一列连续的正整数之和。这个数列必须包含至少两个正整数。你需要求出这个数列的最小长度。如果这个数列不存在则输出-1。
输入格式:
每行包含一个正整数n。
每个文件包含多行,读入直到文件结束。
输出格式:
对于每个n,输出一行,为这个数列的最小长度。
 

第一行是两个整数N和S,其中N是树的节点数。

第二行是N个正整数,第i个整数表示节点i的正整数。

接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

输出格式:

输出路径节点总和为S的路径数量。

输入样例:

输出样例:

3 3

1 2 3

1 2

1 3

2

数据范围:

对于30%数据,N≤100;

对于60%数据,N≤1000;

对于100%数据,N≤100000,所有权值以及S都不超过1000。

数据范围:
对于所有数据,n≤263

这个是JLOI2012的T1,发出来仅为了试题完整

=============================================================================================

在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。

Input

第一行是两个整数N和S,其中N是树的节点数。

第二行是N个正整数,第i个整数表示节点i的正整数。

接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

Output

输出路径节点总和为S的路径数量。

Sample Input

3 3

1 2 3

1 2

1 3

Sample Output

2

HINT

对于100%数据,N≤100000,所有权值以及S都不超过1000。

Source

刚开始以为是点分治,但是这道题目明确说明所有的路径都是一条链

然后来一遍树上前缀和就行了!

注意不要忘了删除

#include<cstdio>
#include<set>
#include<algorithm>
#include<cstring>
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<23,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
using namespace std;
const int MAXN=1e6+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int N,S;
int val[MAXN],sum[MAXN],ans=;
set<int>s;
struct node
{
int u,v,nxt;
}edge[MAXN];
int head[MAXN],num=;
inline void AddEdge(int x,int y)
{
edge[num].u=x;
edge[num].v=y;
edge[num].nxt=head[x];
head[x]=num++;
}
int dfs(int now)
{
s.insert(sum[now]);
if(s.find(sum[now]-S)!=s.end()) ans++;
for(int i=head[now];i!=-;i=edge[i].nxt)
{
sum[edge[i].v]=sum[now]+val[edge[i].v];
dfs(edge[i].v);
}
s.erase(s.find(sum[now]));
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#endif
N=read(),S=read();
memset(head,-,sizeof(head));
for(int i=;i<=N;i++) val[i]=read();
for(int i=;i<=N-;i++)
{
int x=read(),y=read();
AddEdge(x,y);
}
sum[]=val[];
//s.insert(0);
dfs();
printf("%d",ans);
return ;
}
上一篇:python学习笔记(一)元组tuple


下一篇:C++中函数重载和函数覆盖的区别