1 图像直方图
1.1 定义
统计各个像素值,在整幅图像中出现次数的一个分布函数。
1.2 标准化
$\quad p_r(r_k) = \frac{n_k}{MN} \qquad k = 0, 1, 2, ..., L -1 $
$r_{k}$ - 第 k 个像素灰度值; $n_{k}$ - 像素灰度值为 rk 的像素数目;
MN - 图像中总的像素个数; [0, L-1] - 像素灰度值的范围
1.3 直方图均衡化
1.3.1 定义
直方图均衡化,是将给定图像的直方图改造成均匀分布的直方图,从而扩大像素灰度值的动态范围,达到增强图像对比度的效果。
$\quad s_k = \frac{(L - 1)}{MN} \sum\limits_{j=0}^k n_j \qquad k = 0, 1, 2, ..., L - 1 $
1.3.2 实例
一幅灰度值范围是[0, 7],64行64列的数字图像,其灰度分布如下表所示,求直方图均衡化之后的灰度分布。
r(k) | n(k) | P(rk) |
r(0) = 0 | 790 | 0.19 |
r(1) = 1 | 1023 | 0.25 |
r(2) = 2 | 850 | 0.21 |
r(3) = 3 | 656 | 0.16 |
r(4) = 4 | 329 | 0.08 |
r(5) = 5 | 245 | 0.06 |
r(6) = 6 | 122 | 0.03 |
r(7) = 7 | 81 | 0.02 |
根据上述公式得, s(0)=1.33≈1,s(1)=3.08≈3,s(2)≈5,s(3)≈6,s(4)≈6,s(5)≈7,s(6)≈7,s(7)≈7
因为 r(k) -> s(k),所以 s(0)=1 对应有790个像素值。因为r(3), r(4) 分别对应 s(3), s(4),且 s(3)=s(4)=6,
故像素值为6的像素数为 (656+329)个,同理可计算像素值为7的像素数。
将不同像素值对应的的像素数除以MN(图像的像素总数),便得到均衡化之后的灰度直方图,如下所示:
2 四个参数
H1 和 H2 为两个待比较的直方图。1) 和 2) 的值越大,二者越匹配;而 3) 和 4) 的值越小,两者越匹配。
1) Correlation
2) Intersection
3) Chi-square
4) Bhattacharyya distance
3 OpenCV中的函数
3.1 equalizeHist
void equalizeHist (
InputArray src, // 输入图像
OutputArray dst // 输出图像
);
源码:
void cv::equalizeHist( InputArray _src, OutputArray _dst )
{
CV_Assert( _src.type() == CV_8UC1 ); if (_src.empty())
return; CV_OCL_RUN(_src.dims() <= && _dst.isUMat(),
ocl_equalizeHist(_src, _dst)) Mat src = _src.getMat();
_dst.create( src.size(), src.type() );
Mat dst = _dst.getMat(); Mutex histogramLockInstance; const int hist_sz = EqualizeHistCalcHist_Invoker::HIST_SZ;
int hist[hist_sz] = {,};
int lut[hist_sz]; EqualizeHistCalcHist_Invoker calcBody(src, hist, &histogramLockInstance);
EqualizeHistLut_Invoker lutBody(src, dst, lut);
cv::Range heightRange(, src.rows); if(EqualizeHistCalcHist_Invoker::isWorthParallel(src))
parallel_for_(heightRange, calcBody);
else
calcBody(heightRange); int i = ;
while (!hist[i]) ++i; int total = (int)src.total();
if (hist[i] == total)
{
dst.setTo(i);
return;
} float scale = (hist_sz - .f)/(total - hist[i]);
int sum = ; for (lut[i++] = ; i < hist_sz; ++i)
{
sum += hist[i];
lut[i] = saturate_cast<uchar>(sum * scale);
} if(EqualizeHistLut_Invoker::isWorthParallel(src))
parallel_for_(heightRange, lutBody);
else
lutBody(heightRange);
}
3.2 calcHist
void cv::calcHist(
const Mat * images,
int nimages,
const int * channels,
InputArray mask,
OutputArray hist,
int dims,
const int * histSize,
const float ** ranges,
bool uniform = true,
bool accumulate = false )
3.3 compareHist
double cv::compareHist (
InputArray H1,
InputArray H2,
int method
)
4 实例
4.1 直方图计算
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgcodecs/imgcodecs.hpp"
#include "opencv2/imgproc/imgproc.hpp" using namespace cv; int main( int, char** argv )
{
Mat src, dst; // 1) Load image
src = imread("left.png");
if(src.empty()) {
return -;
} // 2) Separate the image in 3 places ( B, G and R )
std::vector<Mat> bgr_planes;
split( src, bgr_planes ); // 3) Establish the number of bins
int histSize = ; // 4) Set the ranges (for B,G,R)
float range[] = { , } ;
const float* histRange = { range }; bool uniform = true;
bool accumulate = false; Mat b_hist, g_hist, r_hist; // 5) Compute the histograms
calcHist( &bgr_planes[], , , Mat(), b_hist, , &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[], , , Mat(), g_hist, , &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[], , , Mat(), r_hist, , &histSize, &histRange, uniform, accumulate ); // 6) Draw the histograms for B, G and R
int hist_w = ;
int hist_h = ;
int bin_w = cvRound( (double) hist_w/histSize ); Mat histImage( hist_h, hist_w, CV_8UC3, Scalar( ,,) ); // 7) Normalize the result to [ 0, histImage.rows ]
normalize(b_hist, b_hist, , histImage.rows, NORM_MINMAX, -, Mat() );
normalize(g_hist, g_hist, , histImage.rows, NORM_MINMAX, -, Mat() );
normalize(r_hist, r_hist, , histImage.rows, NORM_MINMAX, -, Mat() ); // 8) Draw for each channel
for( int i = ; i < histSize; i++ )
{
line( histImage, Point( bin_w*(i-), hist_h - cvRound(b_hist.at<float>(i-)) ) ,
Point( bin_w*(i), hist_h - cvRound(b_hist.at<float>(i)) ),
Scalar( , , ), , , );
line( histImage, Point( bin_w*(i-), hist_h - cvRound(g_hist.at<float>(i-)) ) ,
Point( bin_w*(i), hist_h - cvRound(g_hist.at<float>(i)) ),
Scalar( , , ), , , );
line( histImage, Point( bin_w*(i-), hist_h - cvRound(r_hist.at<float>(i-)) ) ,
Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
Scalar( , , ), , , );
} // 9) Display
imshow("calcHist Demo", histImage ); waitKey();
}
4.2 直方图均衡化
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h> using namespace cv;
using namespace std; int main( int, char** argv )
{
Mat src, dst; const char* source_window = "Source image";
const char* equalized_window = "Equalized Image"; // Load image
src = imread( argv[], ); if( src.empty() )
{ cout<<"Usage: ./Histogram_Demo <path_to_image>"<<endl;
return -;
} // Convert to grayscale
cvtColor( src, src, COLOR_BGR2GRAY ); // Apply Histogram Equalization
equalizeHist( src, dst ); // Display results
namedWindow( source_window, WINDOW_AUTOSIZE );
namedWindow( equalized_window, WINDOW_AUTOSIZE ); imshow( source_window, src );
imshow( equalized_window, dst ); // Wait until user exits the program
waitKey(); return ; }
4.3 直方图比较
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h> using namespace std;
using namespace cv; /**
* @function main
*/
int main( int argc, char** argv )
{
Mat src_base, hsv_base;
Mat src_test1, hsv_test1;
Mat src_test2, hsv_test2;
Mat hsv_half_down; /// Load three images with different environment settings
if( argc < )
{
printf("** Error. Usage: ./compareHist_Demo <image_settings0> <image_setting1> <image_settings2>\n");
return -;
} src_base = imread( argv[], );
src_test1 = imread( argv[], );
src_test2 = imread( argv[], ); /// Convert to HSV
cvtColor( src_base, hsv_base, COLOR_BGR2HSV );
cvtColor( src_test1, hsv_test1, COLOR_BGR2HSV );
cvtColor( src_test2, hsv_test2, COLOR_BGR2HSV ); hsv_half_down = hsv_base( Range( hsv_base.rows/, hsv_base.rows - ), Range( , hsv_base.cols - ) ); /// Using 50 bins for hue and 60 for saturation
int h_bins = ; int s_bins = ;
int histSize[] = { h_bins, s_bins }; // hue varies from 0 to 179, saturation from 0 to 255
float h_ranges[] = { , };
float s_ranges[] = { , }; const float* ranges[] = { h_ranges, s_ranges }; // Use the o-th and 1-st channels
int channels[] = { , }; /// Histograms
MatND hist_base;
MatND hist_half_down;
MatND hist_test1;
MatND hist_test2; /// Calculate the histograms for the HSV images
calcHist( &hsv_base, , channels, Mat(), hist_base, , histSize, ranges, true, false );
normalize( hist_base, hist_base, , , NORM_MINMAX, -, Mat() ); calcHist( &hsv_half_down, , channels, Mat(), hist_half_down, , histSize, ranges, true, false );
normalize( hist_half_down, hist_half_down, , , NORM_MINMAX, -, Mat() ); calcHist( &hsv_test1, , channels, Mat(), hist_test1, , histSize, ranges, true, false );
normalize( hist_test1, hist_test1, , , NORM_MINMAX, -, Mat() ); calcHist( &hsv_test2, , channels, Mat(), hist_test2, , histSize, ranges, true, false );
normalize( hist_test2, hist_test2, , , NORM_MINMAX, -, Mat() ); /// Apply the histogram comparison methods
for( int i = ; i < ; i++ )
{
int compare_method = i;
double base_base = compareHist( hist_base, hist_base, compare_method );
double base_half = compareHist( hist_base, hist_half_down, compare_method );
double base_test1 = compareHist( hist_base, hist_test1, compare_method );
double base_test2 = compareHist( hist_base, hist_test2, compare_method ); printf( " Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half , base_test1, base_test2 );
} printf( "Done \n" ); return ;
}
参考资料
<Digital Image Processing> 3rd
OpenCV Tutorials / Image Processing (imgproc module) / Histogram Calculation