GPU高性能计算-CUDA

前段时间有个同学的毕设是搞并行计算的,他基本不懂编程把我拉过去帮忙,我之前也没弄过,帮着搞了2天。先把代码贴上去,等有时间在把详细补充一些内容。

CUDA编程主要是利用了显卡优越的并行计算能力,把一个大的任务分成很多小的单位同时执行,这样就节省了运行的时间。

1:首先要在显存中分配空间,把内存中的变量复制到其中;

 cudaMemcpy(gpu_img_1,buffer1,(img_1.w*img_1.h)*sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(gpu_img_2,buffer2,(img_1.w*img_1.h)*sizeof(float),cudaMemcpyHostToDevice);
clock_t start_time=clock();
dim3 blocks(block_num,block_num); //check 256*256;
dim3 threads(,);
VAR_KERNEL<<<blocks,threads>>>(gpu_img_1,gpu_img_2,mean_1,mean_2,gpu_variance_1, gpu_variance_2, gpu_covariance);

2:要分配线程块,对于怎么分配块的大小让显卡的性能达到最优,还不是特别清楚,网络上有一些经验的数字;

下面是核函数,与C/C++代码格式略有不同,

__global__ void VAR_KERNEL(float *img_1,float *img_2,float average_1,float average_2,float *variance1,float *variance2,float *covariance)
{
int x=threadIdx.x+blockIdx.x*blockDim.x;
int y=threadIdx.y+blockIdx.y*blockDim.y;
int offset=x+y*blockDim.x*gridDim.x;

float pixel_1;
float pixel_2;
float temp;
pixel_1=img_1[offset];
pixel_2=img_2[offset];
temp=(pixel_1-average_1)*(pixel_1-average_1);// 计算x方差
variance1[offset]=temp;
temp=(pixel_2-average_2)*(pixel_2-average_2);//计算y方差
variance2[offset]=temp;
temp=(pixel_1-average_1)*(pixel_2-average_2);
covariance[offset]=temp;// 计算协方差
}

最后,我们现在要将计算结果拷贝出来,就算完成要做的事情了。

先就这样大致的写一下,等有时间再补充。

上一篇:Git 使用初体验


下一篇:WIN7或者WIN8上边框的异常问题的解决攻略