版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_42080294/article/details/89183779
df1 = pd.DataFrame([['张三', 10, '男'],
['李四', 11, '男'],
['王五', 11, '女'],
['赵六', 10, '女'],
['王七', 11, '男'],
['Mike', 10, '男']],
columns=['name', 'age', 'sex'])
df1
df2 = pd.DataFrame([['Mike', 10, '男'],
['Jane', 11, '女'],
['张三', 10, '男']],
columns=['name', 'age', 'sex'])
df2
#取交集:
#pd.merge(df1,df2,on=['name', 'age', 'sex'],how='inner')
pd.merge(df1,df2,how='inner')
#取并集
#pd.merge(df1,df2,on=['name', 'age', 'sex'],how='outer')
pd.merge(df1,df2,how='outer')
#取差集(从df1中过滤df2中存在的数据)
df1 = df1.append(df2)
df1 = df1.append(df2)
df1 = df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False)
df1