Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note: Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
解析:
本题目的在于给定一个三角形矩阵,求得和最小的路径。每层只能选一个整数,上一层和下一层的整数必须是相邻的。
思路:
- 动态规划: 到第i层的第k个顶点的最小路径长度表示为f(i,j),则:
f(i,j) = min{f(i,j + 1),f(i + 1, j + 1)}+ (i,j)
- 本题主要关心的是空间复杂度不要超过n。
- 注意边界条件——每一行中的第一和最后一个元素在上一行中只有一个邻居。而其他中间的元素在上一行中都有两个相邻元素。
算法实现代码:
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
int len = triangle.size();
for (int i = len- 2; i >= 0; i--)
for (int j = 0; j < i + 1; ++j){
if(triangle[i+1][j] > triangle[i+1][j+1]){
triangle[i][j] += triangle[i+1][j+1];
}
else{
triangle[i][j] += triangle[i+1][j];
}
}
return triangle[0][0];
}
};