斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n)。第一个斐波拉契数为F() = 。 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod 。 

斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为了避免递归调用的开销,可以用动态规划的思想轻松获得,时间复杂度为O(n),空间复杂度为O(1). 但是对于更大规模,比如上题中的n的范围,动态规划所花的时间也不少了。好在之前在Code Hunt上碰倒这个问题。

考虑下面三个矩阵:

F(n)   F(n-1)        1,1         F(n-1)  F(n-2)

F(n-1) F(n-1)  与   1,0   与   F(n-2)  F(n-3)

分别设为S(n), M, S(n-1).  S(n) = M x S(n-1).

于是

S(n) = M^(n-1) x S(1) = M^n;   (关系1)

再来看看,若n为32位正整数,设c[32]为其二进制序列的逆序列, c[i] =0,1;

n = Σ(c[i]*2^i),  i=0,...,31;

所以只要我知道M的2^i 方幂(i=0,1,2,...,31),我们可以轻松计算出S(n)

而计算出32个M的幂需要做32次矩阵乘法,而计算M^n次方,即M^( Σ(c[i]*2^i) ) 也最多需要做32次矩阵乘法

因而最多64次矩阵乘法即可计算出任意32位正整数范围的n对应的S(n)

 class Fibonacci {
/*author: Haibin Chen*/
public:
int getNthNumber(int n) {
// write code here
if(n <=) return ;
long a[];
long b[];
long c[];
long d[];
a[]=;
b[]=;
c[]=;
d[]=;
int i,j;
for(i=;i<;i++){
a[i] = a[i-];
b[i] = b[i-];
c[i] = c[i-];
d[i] = d[i-];
getMulti(a[i],b[i],c[i],d[i],a[i],b[i],c[i],d[i]);
}
long ra = ,rb =,rc=,rd=,mask=;
for(i=;i<;i++){
if((n&mask)!=){
getMulti(ra,rb,rc,rd,a[i],b[i],c[i],d[i]);
}
mask = mask <<;
}
return ra;
}
void getMulti(long &a,long &b,long &c,long &d,long a1,long b1,long c1,long d1){
long tempa = (a*a1+b*c1)%;
long tempb = (a*b1+b*d1)%;
long tempc = (c*a1+d*c1)%;
long tempd = (c*b1+d*d1)%;
a = tempa;
b = tempb;
c = tempc;
d = tempd;
}
};
上一篇:BZOJ1500[NOI2005]维修数列


下一篇:PAT 1049. 数列的片段和(20)