gemm() 与 gesvd() 到矩阵求逆(inverse)(根据 SVD 分解和矩阵乘法求矩阵的逆)

可逆方阵 A 的逆记为,A−1,需满足 AA−1=I。

在 BLAS 的各种实现中,一般都不会直接给出 matrix inverse 的直接实现,其实矩阵(方阵)的逆是可以通过 gemm()gesvd()操作得到。

实值可逆方阵 A,其 SVD 分解如下:

A⋅V=U⋅S

其中:

  • V,U 均为正交矩阵,

    {VVT=IUUT=I⇒{V−1=VTU−1=UT
  • S 为对角矩阵;

    • 因为 A 是可逆的,根据 SVD 的定义,S 的对角元素均是正数;

所以有:

A⋅V⋅S−1⋅U−1=I⇒A⋅V⋅S−1⋅UT=I

也即:

A−1=V⋅S−1⋅UT

references

上一篇:(笔记)一场由SD卡引发的灾难


下一篇:[机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用