关于数链剖分我在网上看到的有几个比较好的讲解,本篇主要是对AC代码的注释(感谢各位witer的提供)
这是讲解
http://www.cnblogs.com/kuangbin/archive/2013/08/15/3259083.html
另一个是百度文库
这是AC代码(以bzoj1036为例题)
http://www.cnblogs.com/kuangbin/archive/2013/08/15/3259083.html
但是我相信很多人有和我一样的经历,就是看各种大神的代码的时候只是膜拜他们的长度和复杂,但是大神们却并不对代码进行讲解,导致我们和多人看不懂。下来还得自己理解。
这样会花费很长的时间。。。。TAT!
下面是我对AC代码的注释,原文并没有那么多。其中没有关于线段树的知识,只是对剖分时进行了解释。对于不了解线段树的读者请自行百度。。。。。
希望能对读者有较大的帮助。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<string>
using namespace std;
const int MAXN = ;
struct Edge//E[i].to为边E[i]指向的点.
{// E[i].next为边E的上一条边(即E与E的上一条边由同一节点发出).
int to,next;
}edge[MAXN*];
int head[MAXN],tot;//head[j]为节点j的最后一条发出边.
int top[MAXN]; //top[v] 表示v所在的重链的顶端节点
int fa[MAXN]; //父亲节点
int deep[MAXN];//深树的度
int num[MAXN]; //num[v]表示以v为根的子树的节点数
int p[MAXN]; //p[v]表示v在线段树中的位置
int fp[MAXN];//和p数组相反
int son[MAXN];//重儿子
int pos;
void init()
{
tot=;pos=;
memset(head,,sizeof(head));
memset(son,-,sizeof(son));
}
void addedge(int u,int v)
{
edge[++tot].to=v;edge[tot].next=head[u];head[u]=tot;
}
void dfs1(int u,int pre,int d) //第一遍dfs求出fa,deep,num,son
{
deep[u]=d;//u 深搜到的点 pre u的前驱 d 深度
fa[u]=pre;//完成父亲数组
num[u]=;//u 包含的点数
for(int i=head[u];i;i=edge[i].next){
int v=edge[i].to;//边i的指向点
if(v!=pre){//判断是否是i的父亲,若是跳出不是继续深搜
dfs1(v,u,d+);//v 深搜到的点 u v的父亲(前驱) 深度+1
num[u]+=num[v];//父亲包含的点数=儿子包含的点数+1
if(son[u]==-||num[v]>num[son[u]])//son==-1时,即没有标记重儿子,直接标记
son[u]=v;// num[v]>num[son[u]]如果v包含的节点数大于其父亲的重儿子的节点数,v变为
}// 其父亲的重儿子
}
}
void getpos(int u,int sp)//将重儿子连成重链
{
top[u]=sp;//sp为传递变量,即若sp不变,DFS过程中的重儿子均属于以sp为根的重链
p[u]=pos++;//将重链的节点放在数组p中,来构建线段树
fp[p[u]]=u;//反之
if(son[u]==-) return;//若son为-1,则该点为叶子节点,返回
getpos(son[u],sp);//DFS对u的重儿子,将其加入重链中,sp不变
for(int i=head[u];i;i=edge[i].next){//边的循环(将一条重链添加完后再对轻边进行添加)
int v=edge[i].to;//v是边i的指向点
if(v!=son[u]&&v!=fa[u]) getpos(v,v);//(v!=fa[u])处理v是u的父亲的情况
}//若v是u的儿子但不是重儿子(即其属于轻边),以自己为根(修改sp)继续DFS形成新的重链
}
struct Node//线段树的点
{
int l,r;
int sum;
int Max;
}segTree[MAXN*];
void push_up(int i)
{
segTree[i].sum=segTree[i<<].sum+segTree[(i<<)|].sum;
segTree[i].Max=max(segTree[i<<].Max,segTree[(i<<)|].Max);
}
int s[MAXN];
void build(int i,int l,int r)//建线段树(不懂的看线段树的讲解)
{
segTree[i].l=l;
segTree[i].r=r;
if(l==r){
segTree[i].sum=segTree[i].Max=s[fp[l]];
return;
}
int mid=(l+r)/;
build(i<<,l,mid);
build((i<<)|,mid+,r);
push_up(i);//用来储存树上的和、最大值
}
void update(int i,int k,int val)//更新线段树的第k个值为val
{
if(segTree[i].l==k&&segTree[i].r==k){
segTree[i].sum=segTree[i].Max=val;
return;
}
int mid=(segTree[i].l+segTree[i].r)/;
if(k<=mid)update(i<<,k,val);
else update((i<<)|,k,val);
push_up(i);
}
int queryMax(int i,int l,int r)//查询线段树[l,r]区间的最大值
{
if(segTree[i].l==l&&segTree[i].r==r){
return segTree[i].Max;
}
int mid=(segTree[i].l+segTree[i].r)/;
if(r<=mid) return queryMax(i<<,l,r);
else if(l > mid)return queryMax((i<<)|,l,r);
else return max(queryMax(i<<,l,mid),queryMax((i<<)|,mid+,r));
}
int querySum(int i,int l,int r) //查询线段树[l,r]区间的和
{
if(segTree[i].l==l&&segTree[i].r==r)
return segTree[i].sum;
int mid=(segTree[i].l+segTree[i].r)/;
if(r<=mid)return querySum(i<<,l,r);
else if(l>mid)return querySum((i<<)|,l,r);
else return querySum(i<<,l,mid)+querySum((i<<)|,mid+,r);
}
int findMax(int u,int v)//查询u->v路径上节点的最大权值
{
int f1=top[u],f2=top[v];
int tmp=-;
while(f1!=f2){
if(deep[f1]<deep[f2]){
swap(f1,f2);
swap(u,v);
}
tmp=max(tmp,queryMax(,p[f1],p[u]));
u=fa[f1];
f1=top[u];
}
if(deep[u]>deep[v]) swap(u,v);
return max(tmp,queryMax(,p[u],p[v]));
}
int findSum(int u,int v) //查询u->v路径上节点的权值的和
{
int f1=top[u],f2=top[v];//记录所属链的根节点
int tmp=;
while(f1!=f2){
if(deep[f1]<deep[f2]){//同时向上跳
swap(f1,f2);
swap(u,v);
}
tmp+=querySum(,p[f1],p[u]);
u=fa[f1];
f1=top[u];
}
if(deep[u]>deep[v]) swap(u,v);
return tmp+querySum(,p[u],p[v]);
}
int main()
{
// freopen("in.in","r",stdin);
// freopen("out.out","w",stdout);
int n;
int q;
char op[];
int u,v;
while(scanf("%d",&n)==){
init();
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
for(int i=;i<=n;i++)
scanf("%d",&s[i]);
dfs1(,,);
getpos(,);
build(,,pos-);
scanf("%d",&q);
while(q--){
scanf("%s%d%d",op,&u,&v);
if(op[]=='C') update(,p[u],v);//修改单点的值
else if(strcmp(op,"QMAX") == )
printf("%d\n",findMax(u,v));//查询u->v路径上点权的最大值
else printf("%d\n",findSum(u,v));//查询路径上点权的和
}
}
return ;
}
程序员不是打字员而是作家!