可参考Windows安装Theano官方教程:
http://deeplearning.net/software/theano/install_windows.html#install-windows
但是内容太多,不看也罢,很多软件已经不需要配置,或者是冗余的。如果你恰好和我一样都是Windows系统,Nvidia带GPU显卡,且你安装的时间离现在2016/02/03的日子还比较近,那么按照下面的顺序装机吧:
1. 安装Nvidia显卡驱动,官网:
http://www.nvidia.cn/Download/index.aspx?lang=cn
2. 安装Visual_Studio:
https://www.visualstudio.com/
3. 安装JDK
http://www.oracle.com/technetwork/java/javase/downloads/index.html
4. 安装CUDA 使用GPU加速(选择自己的配置,如Windows – x86_64-7-local)
https://developer.nvidia.com/cuda-downloads
5. 安装ANACOND可以免去安装很多Python库的麻烦:
https://www.continuum.io/downloads#_windows
6. Python IDE: PyCharm:
http://www.jetbrains.com/pycharm/download/#section=windows
7. 配置G++
官网给的建议是安装TDM-GCC(http://tdm-gcc.tdragon.net/),但是我安装之后出现g++加载错误,不确定是不是版本不匹配的问题。在参考博文(http://blog.sina.com.cn/s/blog_96b836170102vq22.html)中提到可以安装MinGW解决g++问题,解决方案为:在cmd输入:conda install mingw libpython,MinGW等文件夹会自动装到anaconda下面。
8. 安装Theano
https://github.com/Theano/Theano/archive/master.zip
解压,进入目录在命令行中执行“python setup.py develop”
9. 配置GPU和G++编译环境:创建文件C:\Users\jacoxu\.theanorc,内容如下:
- [global]
- device = gpu
- floatX = float32
- [nvcc]
- compiler_bindir=C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin
- cxxflags = -IC:\Anaconda2\MinGW
重启电脑
10. 测试
import theano
==输出以下信息=====
Using gpu device 0: GeForce GT 970 (CNMeM is disabled)
注意:第一次使用一些库的时候,theano会自己创建库并打印一些信息,第二次再使用时则不会出现。另外打印信息中出现(CNMeM is
disabled),有些用户则没有此信息或者是(CNMeM is
enabled),目前尚未确定此信息为何意,但是并不影响Theano和GPU的正常使用。
根据官网给出的示例程序测试当前环境下是否可以正常使用GPU:
http://deeplearning.net/software/theano/tutorial/using_gpu.html#using-gpu
- from theano import function, config, shared, sandbox
- import theano.tensor as T
- import numpy
- import time
- vlen = 10 * 30 * 768 # 10 x #cores x # threads per core
- iters = 1000
- rng = numpy.random.RandomState(22)
- x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
- f = function([], T.exp(x))
- print(f.maker.fgraph.toposort())
- t0 = time.time()
- for i in xrange(iters):
- r = f()
- t1 = time.time()
- print(“Looping %d times took %f seconds” % (iters, t1 - t0))
- print(“Result is %s” % (r,))
- if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
- print(‘Used the cpu’)
- else:
- print(‘Used the gpu’)
如果GPU正常使用,则应该输出如下:
D:\>python check1.py
Using gpu device 0: GeForce GTX 970 (CNMeM is disabled)
[GpuElemwise{exp,no_inplace}(), HostFromGpu(Gp
uElemwise{exp,no_inplace}.0)]
Looping 1000 times took 0.858000 seconds
Result is [ 1.23178029 1.61879349 1.52278066 ..., 2.20771813 2.29967761
1.62323296]
Used the gpu
大功告成~!如有问题请留言,祝各位好运!Cross fingers~~