从定时器的选型,到透过源码看XXL-Job(下)

透过源码看xxl-job

(注:本文基于xxl-job最新版v2.0.2, quartz版本为 v2.3.1。 以下提到的调度中心均指xxl-job-admin项目)

上回说到,xxl-job是一个中心化的设计方案,分为了调度中心执行器两部分。其本质上仍然是对quartz的封装。那么,我们就分别通过“调度中心” 和 “执行器” 来看看它是怎么运作的。

调度中心

初始化

由于是spring boot应用,因此先从配置看起。

XxlJobDynamicSchedulerConfig

相关的初始化是在XxlJobDynamicSchedulerConfig中完成的,下面我们来看XxlJobDynamicSchedulerConfig源码。

@Configuration

public class XxlJobDynamicSchedulerConfig {
  @Bean
  public SchedulerFactoryBean getSchedulerFactoryBean(DataSource dataSource){
    SchedulerFactoryBean schedulerFactory = new SchedulerFactoryBean();
    schedulerFactory.setDataSource(dataSource);
    schedulerFactory.setAutoStartup(true); // 自动启动
    schedulerFactory.setStartupDelay(20); // 延时启动,应用启动成功后在启动
    schedulerFactory.setOverwriteExistingJobs(true); // 覆盖DB中JOB:true、以数据库中已经存在的为准:false
    schedulerFactory.setApplicationContextSchedulerContextKey("applicationContext");
    schedulerFactory.setConfigLocation(new ClassPathResource("quartz.properties"));
    return schedulerFactory;
  }   @Bean(initMethod = "start", destroyMethod = "destroy")
  public XxlJobDynamicScheduler getXxlJobDynamicScheduler(SchedulerFactoryBean schedulerFactory){
    Scheduler scheduler = schedulerFactory.getScheduler();
    XxlJobDynamicScheduler xxlJobDynamicScheduler = new XxlJobDynamicScheduler();
    xxlJobDynamicScheduler.setScheduler(scheduler);
    return xxlJobDynamicScheduler;
  }
}

由上可知 XxlJobDynamicSchedulerConfig 主要是创建了 SchedulerFactoryBean 对XxlJobDynamicScheduler 对象。SchedulerFactoryBean创建调度器(Scheduler, 没错,它就是quartz中的Scheduler对象), XxlJobDynamicScheduler持有对Scheduler对象的引用。

那么,SchedulerFactoryBean 是如何创建 Scheduler的呢,接下来,我们再看看SchedulerFactoryBean 。

SchedulerFactoryBean

SchedulerFactoryBean实现了InitializingBean, 其主要初始化流程在 afterPropertiesSet 方法中。

@Override
public void afterPropertiesSet() throws Exception {
  if (this.dataSource == null && this.nonTransactionalDataSource != null) {
  this.dataSource = this.nonTransactionalDataSource;
  }   if (this.applicationContext != null && this.resourceLoader == null) {
  this.resourceLoader = this.applicationContext;
  }   // 初始化scheduler
  this.scheduler = prepareScheduler(prepareSchedulerFactory());
  try {
  registerListeners();
  registerJobsAndTriggers();
  } catch (Exception ex) {
    try {
    this.scheduler.shutdown(true);
    } catch (Exception ex2) {
      logger.debug("Scheduler shutdown exception after registration failure", ex2);
    }
    throw ex;
  }
}

以上,先通过prepareSchedulerFactory方法创建ScheduleFactory对象(quartz),再通过prepareScheduler方法创建Scheduler对象。

private SchedulerFactory prepareSchedulerFactory() throws SchedulerException, IOException {
SchedulerFactory schedulerFactory = this.schedulerFactory;
if (schedulerFactory == null) {
  //默认为StdSchedulerFactory
   schedulerFactory = BeanUtils.instantiateClass(this.schedulerFactoryClass);
  if (schedulerFactory instanceof StdSchedulerFactory) {
  //解析处理配置
    initSchedulerFactory((StdSchedulerFactory) schedulerFactory);
  } else if (this.configLocation != null || this.quartzProperties != null || this.taskExecutor != null || this.dataSource != null) {
    throw new IllegalArgumentException("StdSchedulerFactory required for applying Quartz properties: " + schedulerFactory);
  }
}
return schedulerFactory;
}

接下来,我们看看prepareScheduler方法是怎么创建scheduler对象的。

protected Scheduler createScheduler(SchedulerFactory schedulerFactory, String schedulerName) throws SchedulerException {
.........
  //已省略部分我们本次不用关心的代码
  try {
    SchedulerRepository repository = SchedulerRepository.getInstance();
    synchronized (repository) {
      Scheduler existingScheduler = (schedulerName != null ? repository.lookup(schedulerName) : null);
      //通过schedulerFactory创建scheduler, 重点关注。前往quartz中一探究竟
      Scheduler newScheduler = schedulerFactory.getScheduler();
      if (newScheduler == existingScheduler) {
        throw new IllegalStateException("Active Scheduler of name '" + schedulerName + "' already registered " + "in Quartz SchedulerRepository. Cannot create a new Spring-managed Scheduler of the same name!");
      }
      if (!this.exposeSchedulerInRepository) {
        SchedulerRepository.getInstance().remove(newScheduler.getSchedulerName());
      }
      return newScheduler;
    }
  } finally {
    if (overrideClassLoader) {
      // Reset original thread context ClassLoader.
      currentThread.setContextClassLoader(threadContextClassLoader);
    }
  }
}

ok, 接着前往quartz中一探究竟。

StdSchedulerFactory

public Scheduler getScheduler() throws SchedulerException {
  if (cfg == null) {
    initialize();
  }
  SchedulerRepository schedRep = SchedulerRepository.getInstance();
  Scheduler sched = schedRep.lookup(getSchedulerName());   //如果存在该对象,则直接返回
  if (sched != null) {
    if (sched.isShutdown()) {
      schedRep.remove(getSchedulerName());
    } else {
      return sched;
    }
  }   //重点关注
  sched = instantiate();
  return sched;
}

下面就重点看看instantiate方法。

private Scheduler instantiate() throws SchedulerException {
....   QuartzSchedulerResources rsrcs = new QuartzSchedulerResources();
  rsrcs.setName(schedName);
  rsrcs.setThreadName(threadName);
  rsrcs.setInstanceId(schedInstId);
  rsrcs.setJobRunShellFactory(jrsf);
  rsrcs.setMakeSchedulerThreadDaemon(makeSchedulerThreadDaemon);
  rsrcs.setThreadsInheritInitializersClassLoadContext(threadsInheritInitalizersClassLoader);
  rsrcs.setBatchTimeWindow(batchTimeWindow);
  rsrcs.setMaxBatchSize(maxBatchSize);
  rsrcs.setInterruptJobsOnShutdown(interruptJobsOnShutdown);
  rsrcs.setInterruptJobsOnShutdownWithWait(interruptJobsOnShutdownWithWait);
  rsrcs.setJMXExport(jmxExport);
  rsrcs.setJMXObjectName(jmxObjectName);   SchedulerDetailsSetter.setDetails(tp, schedName, schedInstId);   rsrcs.setThreadExecutor(threadExecutor);
  threadExecutor.initialize();   rsrcs.setThreadPool(tp);
  if(tp instanceof SimpleThreadPool) {
    if(threadsInheritInitalizersClassLoader)
    ((SimpleThreadPool)tp).setThreadsInheritContextClassLoaderOfInitializingThread(threadsInheritInitalizersClassLoader);
  }
  tp.initialize();
  tpInited = true;   rsrcs.setJobStore(js);   // add plugins
  for (int i = 0; i < plugins.length; i++) {
    rsrcs.addSchedulerPlugin(plugins[i]);
  }   //创建QuartzScheduler对象,重点关注,此为Quartz核心部分
  qs = new QuartzScheduler(rsrcs, idleWaitTime, dbFailureRetry);
  qsInited = true;   // 创建Scheduler对象,QuartzScheduler并未直接实现Scheduler接口,而是作为了Scheduler的委托者
  Scheduler scheduler = instantiate(rsrcs, qs);
  ...
} protected Scheduler instantiate(QuartzSchedulerResources rsrcs, QuartzScheduler qs) {
  Scheduler scheduler = new StdScheduler(qs);
  return scheduler;
}

以上代码是经过大刀阔斧砍掉过的,原代码十分长,通篇下来主要是根据配置去创建一系列的对象,所有的对象最终都将被以上代码中的 QuartzSchedulerResources 对象所持有,这些对象共同协作才能最终组装出Quartz这台"机器", 通过以上代码也可大致窥探出创建了哪些对象实例,这些对象实例的创建大多都可通过quartz.properties进行配置。

其中,我们更应该关注的是 QuartzScheduler 对象的创建,它实则为Quartz的心脏。

QuartzScheduler

public QuartzScheduler(QuartzSchedulerResources resources, long idleWaitTime, @Deprecated long dbRetryInterval) throws SchedulerException {
  this.resources = resources;
  if (resources.getJobStore() instanceof JobListener) {
  addInternalJobListener((JobListener)resources.getJobStore());
  }   //创建QuartzSchedulerThread对象,重点关注,此线程负责任务调度
  this.schedThread = new QuartzSchedulerThread(this, resources);
  ThreadExecutor schedThreadExecutor = resources.getThreadExecutor();
  //DefaultThreadExecutor对象,该方法的作用是启动schedThread线程
  schedThreadExecutor.execute(this.schedThread);
  if (idleWaitTime > 0) {
    this.schedThread.setIdleWaitTime(idleWaitTime);
  }   jobMgr = new ExecutingJobsManager();
  addInternalJobListener(jobMgr);
  errLogger = new ErrorLogger();
  addInternalSchedulerListener(errLogger);   signaler = new SchedulerSignalerImpl(this, this.schedThread);   getLog().info("Quartz Scheduler v." + getVersion() + " created.");
}

以上代码,主要是创建了QuartzSchedulerThread对象,然后通过DefaultThreadExecutor进行启动。

QuartzSchedulerThread

QuartzSchedulerThread实现自Thread,我们接下来就看看其核心代码。

@Override
public void run() {
  int acquiresFailed = 0;   //是否结束循环\调度
  while (!halted.get()) {
    try {
      synchronized (sigLock) {
      //如果是暂停状态,则在此阻塞,直到外部更改状态
        while (paused && !halted.get()) {
          try {
            sigLock.wait(1000L);
          } catch (InterruptedException ignore) {
          }
          acquiresFailed = 0;
        }         if (halted.get()) {
          break;
        }
      }       ......       //获取可用线程数量
      int availThreadCount =qsRsrcs.getThreadPool().blockForAvailableThreads();
      if(availThreadCount > 0) {
        List<OperableTrigger> triggers;
        long now = System.currentTimeMillis();
        clearSignaledSchedulingChange();
      //从DB中取出一批即将要执行的Trigger(触发器), DB中该数据状态也会同步进行修改
        try {
          triggers = qsRsrcs.getJobStore().acquireNextTriggers(
          now + idleWaitTime, Math.min(availThreadCount, qsRsrcs.getMaxBatchSize()), qsRsrcs.getBatchTimeWindow());
          acquiresFailed = 0;
          if (log.isDebugEnabled())
          log.debug("batch acquisition of " + (triggers == null ? 0 : triggers.size()) + " triggers");
        } catch (JobPersistenceException jpe) {
          if (acquiresFailed == 0) {
            qs.notifySchedulerListenersError("An error occurred while scanning for the next triggers to fire.",jpe);
          }
          if (acquiresFailed < Integer.MAX_VALUE)
          acquiresFailed++;
          continue;
        } catch (RuntimeException e) {
          if (acquiresFailed == 0) {
            getLog().error("quartzSchedulerThreadLoop: RuntimeException " +e.getMessage(), e);
          }
          if (acquiresFailed < Integer.MAX_VALUE)
          acquiresFailed++;
          continue;
        }         if (triggers != null && !triggers.isEmpty()) {           ......           List<TriggerFiredResult> bndles = new ArrayList<TriggerFiredResult>();           boolean goAhead = true;
          synchronized(sigLock) {
            goAhead = !halted.get();
          }
          if(goAhead) {
            //取出触发器对应的任务,同步修改相关DB中的记录状态,并调整下次执行时间
            try {
              List<TriggerFiredResult> res = qsRsrcs.getJobStore().triggersFired(triggers);
              if(res != null)
                bndles = res;
            } catch (SchedulerException se) {
              qs.notifySchedulerListenersError("An error occurred while firing triggers '"+ triggers + "'", se);
              for (int i = 0; i < triggers.size(); i++) {
                qsRsrcs.getJobStore().releaseAcquiredTrigger(triggers.get(i));
              }
              continue;
            }           }           //真正执行的方法,包装为JobRunShell, 并从线程池中获取线程进行执行
          for (int i = 0; i < bndles.size(); i++) {
            TriggerFiredResult result = bndles.get(i);
            TriggerFiredBundle bndle = result.getTriggerFiredBundle();
            Exception exception = result.getException();             if (exception instanceof RuntimeException) {
              getLog().error("RuntimeException while firing trigger " + triggers.get(i), exception);
              qsRsrcs.getJobStore().releaseAcquiredTrigger(triggers.get(i));
              continue;
            }             if (bndle == null) {
              qsRsrcs.getJobStore().releaseAcquiredTrigger(triggers.get(i));
              continue;
            }             JobRunShell shell = null;
            try {
              shell = qsRsrcs.getJobRunShellFactory().createJobRunShell(bndle);
              shell.initialize(qs);
            } catch (SchedulerException se) {
              qsRsrcs.getJobStore().triggeredJobComplete(triggers.get(i), bndle.getJobDetail(), CompletedExecutionInstruction.SET_ALL_JOB_TRIGGERS_ERROR);
              continue;
            }             if (qsRsrcs.getThreadPool().runInThread(shell) == false) {
              getLog().error("ThreadPool.runInThread() return false!");
              qsRsrcs.getJobStore().triggeredJobComplete(triggers.get(i), bndle.getJobDetail(), CompletedExecutionInstruction.SET_ALL_JOB_TRIGGERS_ERROR);
            }           }
          continue; // while (!halted)
        }
      } else {
        continue; // while (!halted)
    }     ......
}

以上代码同样进行过精简,该方法为quartz的核心调度流程。由于内部业务较为复杂,只在代码上加了简单的注释,不过主要流程就是 从DB中获取Trigger触发器和Job(任务), 同时通过更新DB数据状态来防止集群下的“争抢”,通过线程的wait和notify机制来协同线程调度,最终从线程池中获取线程来执行我们的任务。

ok, 到此,quartz这颗小心脏就已经跳动起来了。

那么,到此结束?

No, 一切才刚刚开始! 说好的xxl-job呢?

XxlJobDynamicScheduler

回到XxlJobDynamicSchedulerConfig,我们发现在初始化XxlJobDynamicScheduler对象后,会调用其start方法。那么,我们进入其start方法一探究竟。

public void start() throws Exception {
  // valid
  Assert.notNull(scheduler, "quartz scheduler is null");   // 国际化
  initI18n();   // 启动维护执行器注册信息守护线程
  JobRegistryMonitorHelper.getInstance().start();   // 启动执行失败的任务扫描守护线程
  JobFailMonitorHelper.getInstance().start();   // 初始化RPC (接收执行器注册和回调等), 在分析执行器的时候再来看,本次不看
  initRpcProvider();   logger.info(">>>>>>>>> init xxl-job admin success.");
}

当执行器自动注册后,调度中心是如何去维护它的呢? 答案就在 JobRegistryMonitorHelper 线程里。

JobRegistryMonitorHelper

public void start(){
  registryThread = new Thread(new Runnable() {
    @Override
    public void run() {
      while (!toStop) {
        try {
          // 从XXL_JOB_QRTZ_TRIGGER_GROUP表中获取自动注册类型的执行器
          List<XxlJobGroup> groupList = XxlJobAdminConfig.getAdminConfig().getXxlJobGroupDao().findByAddressType(0);
          if (groupList!=null && !groupList.isEmpty()) {
            //注册信息记录在XXL_JOB_QRTZ_TRIGGER_REGISTRY表,删除90秒没心跳机器
            XxlJobAdminConfig.getAdminConfig().getXxlJobRegistryDao().removeDead(RegistryConfig.DEAD_TIMEOUT);             HashMap<String, List<String>> appAddressMap = new HashMap<String, List<String>>();
            //XXL_JOB_QRTZ_TRIGGER_REGISTRY表获取存活的机器
            List<XxlJobRegistry> list =XxlJobAdminConfig.getAdminConfig().getXxlJobRegistryDao().findAll(RegistryConfig.DEAD_TIMEOUT);
            //appname 相同的形成集群
            if (list != null) {
              for (XxlJobRegistry item: list) {
                if (RegistryConfig.RegistType.EXECUTOR.name().equals(item.getRegistryGroup())) {
                  String appName = item.getRegistryKey();
                  List<String> registryList = appAddressMap.get(appName);
                  if (registryList == null) {
                    registryList = new ArrayList<String>();
                  }                   if (!registryList.contains(item.getRegistryValue())) {
                    registryList.add(item.getRegistryValue());
                  }
                  appAddressMap.put(appName, registryList);
                }
              }
            }             // 维护集群地址(XXL_JOB_QRTZ_TRIGGER_GROUP表,地址逗号分隔)
            for (XxlJobGroup group: groupList) {
              List<String> registryList = appAddressMap.get(group.getAppName());
              String addressListStr = null;
                if (registryList!=null && !registryList.isEmpty()) {
                  Collections.sort(registryList);  
                  addressListStr = "";
                  for (String item:registryList) {
                    addressListStr += item + ",";
                  }                  
                  addressListStr = addressListStr.substring(0, addressListStr.length()-1);
                }
                group.setAddressList(addressListStr);
                XxlJobAdminConfig.getAdminConfig().getXxlJobGroupDao().update(group);
              }
            }
          } catch (Exception e) {
            ......
          }
          try {
            TimeUnit.SECONDS.sleep(RegistryConfig.BEAT_TIMEOUT);
          } catch (InterruptedException e) {
            ......
          }
        }
        logger.info(">>>>>>>>>>> xxl-job, job registry monitor thread stop");
      }
    });
    registryThread.setDaemon(true);
    registryThread.setName("xxl-job, admin JobRegistryMonitorHelper");
    registryThread.start();
  }

关于注册信息的维护比较简单,就是定时检查有没心跳,心跳体现在DB中(通过每次更新DB记录时间,来表示存活)。一定时间窗口内(默认90秒)没更新心跳的,就认为已经dead, 直接剔除,然后维护当前存活机器的地址。

JobFailMonitorHelper

当任务执行失败时,我们需要收到邮件报警。甚至有时候我们需要任务进行自动重试,那么,xxl-job是如何实现的呢? 答案就在 JobFailMonitorHelper 中。

public void start(){
  monitorThread = new Thread(new Runnable() {   @Override
  public void run() {   // monitor
    while (!toStop) {
      try {
        //XXL_JOB_QRTZ_TRIGGER_LOG表中记录的是任务执行
        //从XXL_JOB_QRTZ_TRIGGER_LOG表中取出执行失败的记录
        List<Integer> failLogIds = XxlJobAdminConfig.getAdminConfig().getXxlJobLogDao().findFailJobLogIds(1000);
        if (failLogIds!=null && !failLogIds.isEmpty()) {
          for (int failLogId: failLogIds) {
          //锁定日志记录
          int lockRet = XxlJobAdminConfig.getAdminConfig().getXxlJobLogDao().updateAlarmStatus(failLogId, 0, -1);
          if (lockRet < 1) {
            continue;
          }
          XxlJobLog log = XxlJobAdminConfig.getAdminConfig().getXxlJobLogDao().load(failLogId);
          //XXL_JOB_QRTZ_TRIGGER_INFO表中获取任务详情
          XxlJobInfo info = XxlJobAdminConfig.getAdminConfig().getXxlJobInfoDao().loadById(log.getJobId());
  
          // 没达到最大重试次数,则进行重试,日志中记录的就是剩余的重试次数
          if (log.getExecutorFailRetryCount() > 0) {
          //发起重试(触发流程参考后面章节)
            JobTriggerPoolHelper.trigger(log.getJobId(), TriggerTypeEnum.RETRY, (log.getExecutorFailRetryCount()-1), log.getExecutorShardingParam(), null);
            .......
            //更新日志
            XxlJobAdminConfig.getAdminConfig().getXxlJobLogDao().updateTriggerInfo(log);
          }           // 失败任务报警
          // 0-默认、-1=锁定状态、1-无需告警、2-告警成功、3-告警失败
          int newAlarmStatus = 0;
          if (info!=null && info.getAlarmEmail()!=null && info.getAlarmEmail().trim().length()>0) {
            boolean alarmResult = true;
            try {
              alarmResult = failAlarm(info, log);
            } catch (Exception e) {
              alarmResult = false;
              logger.error(e.getMessage(), e);
            }
            newAlarmStatus = alarmResult?2:3;
          } else {
            newAlarmStatus = 1;
          }
          //更新报警状态
          XxlJobAdminConfig.getAdminConfig().getXxlJobLogDao().updateAlarmStatus(failLogId, -1, newAlarmStatus);
        }
      }       TimeUnit.SECONDS.sleep(10);
      } catch (Exception e) {
        ......
      }
    }
    logger.info(">>>>>>>>>>> xxl-job, job fail monitor thread stop");
    }
  });
  monitorThread.setDaemon(true);
  monitorThread.setName("xxl-job, admin JobFailMonitorHelper");
  monitorThread.start();
}

至此,调度中心我们关心的主要流程就已经初始化完毕。现在,我们大致清楚了xxl-job初始化流程,调度中心对于我们而言,其核心功能无非对任务进行增删改查的管理以及触发和停止,增删改查还好,其实质就是对于DB的CRUD操作,但是触发调度和停止任务是怎么做的呢? 由于xxl-job是调度中心和执行器分离的,所以,上述问题换句话来说就是两者间是如何通信的。

答案就是RPC, 接下来,我们通过调度一个任务,来看看其执行流程。

执行流程

打开调度中心页面,在任务操作栏点击 “启动” 按钮,会发现其请求路径为 “/jobinfo/start”, 都到这一步了,学WEB是不是该秒懂,马上前往 /jobinfo/start。

@Controller
@RequestMapping("/jobinfo")
public class JobInfoController {
  ......   @RequestMapping("/start")
  @ResponseBody
  public ReturnT<String> start(int id) {
    return xxlJobService.start(id);
  }   ......
}
@Service
public class XxlJobServiceImpl implements XxlJobService {
  ......   @Override
  public ReturnT<String> start(int id) {
    //XXL_JOB_QRTZ_TRIGGER_INFO表获取任务信息
    XxlJobInfo xxlJobInfo = xxlJobInfoDao.loadById(id);
    String name = String.valueOf(xxlJobInfo.getId());
    //获取cron表达式
    String cronExpression = xxlJobInfo.getJobCron();     try {
      boolean ret = XxlJobDynamicScheduler.addJob(name, cronExpression);
      return ret?ReturnT.SUCCESS:ReturnT.FAIL;
    } catch (SchedulerException e) {
      logger.error(e.getMessage(), e);
      return ReturnT.FAIL;
    }
  }
}
public class XxlJobDynamicScheduler {
  public static boolean addJob(String jobName, String cronExpression) throws SchedulerException {
  ......   CronTrigger cronTrigger = TriggerBuilder.newTrigger().
  withIdentity(triggerKey).withSchedule(cronScheduleBuilder).build();   // 任务最终将转换为RemoteHttpJobBean
  Class<? extends Job> jobClass_ = RemoteHttpJobBean.class;
  JobDetail jobDetail = JobBuilder.newJob(jobClass_).withIdentity(jobKey).build();   // 通过quartz的scheduler (StdScheduler)调度任务
  Date date = scheduler.scheduleJob(jobDetail, cronTrigger);
  
  return true;
  }
}
public class StdScheduler {

  ...
  private QuartzScheduler sched;
  ...   public Date scheduleJob(JobDetail jobDetail, Trigger trigger) throws SchedulerException {
  //来到了我们之前说的quartz的心脏部分QuartzScheduler
    return sched.scheduleJob(jobDetail, trigger);
  }
}
public class QuartzScheduler implements RemotableQuartzScheduler {

  ......
  private SchedulerSignaler signaler;
  ......   public Date scheduleJob(JobDetail jobDetail,
    Trigger trigger) throws SchedulerException {     ......
    //唤醒线程
    notifySchedulerThread(trigger.getNextFireTime().getTime());
    ......     return ft;
  }   protected void notifySchedulerThread(long candidateNewNextFireTime) {
    if (isSignalOnSchedulingChange()) {
      //通过SchedulerSignalerImpl会调用到signalSchedulingChange方法
      //SchedulerSignalerImpl.schedThread.signalSchedulingChange(candidateNewNextFireTime);
      signaler.signalSchedulingChange(candidateNewNextFireTime);
    }
  }   public void signalSchedulingChange(long candidateNewNextFireTime) {
    synchronized(sigLock) {
      signaled = true;
      signaledNextFireTime = candidateNewNextFireTime;
      //唤醒线程
      sigLock.notifyAll();
    }
  }
}

至此,一切又回到了我们之前介绍过的 QuartzScheduler。刚刚,提到我们的任务类型最终会被注册为RemoteHttpJobBean,这发生在哪一步? 其实就发生在 JobRunShell (之前提到所有任务都会被包装为JobRunShell 对象,然后在线程池中获取线程执行)中的initialize方法。

public class JobRunShell extends SchedulerListenerSupport implements Runnable {
  ......   public void initialize(QuartzScheduler sched) throws SchedulerException {
    this.qs = sched;     Job job = null;
    JobDetail jobDetail = firedTriggerBundle.getJobDetail();     try {
      //最终通过jobdetail的jobClass创建实例,
      //这个jobClass正是我们上面设置的 RemoteHttpJobBean
      job = sched.getJobFactory().newJob(firedTriggerBundle, scheduler);
    } catch (SchedulerException se) {
      sched.notifySchedulerListenersError("An error occured instantiating job to be executed. job= '"+ jobDetail.getKey() + "'", se);
      throw se;
    } catch (Throwable ncdfe) { // such as NoClassDefFoundError
      SchedulerException se = new SchedulerException("Problem instantiating class '"+ jobDetail.getJobClass().getName() + "' - ", ncdfe);
      sched.notifySchedulerListenersError("An error occured instantiating job to be executed. job= '"+ jobDetail.getKey() + "'", se);
      throw se;
    }     this.jec = new JobExecutionContextImpl(scheduler, firedTriggerBundle, job);
  }   ......   //启动
  public void run() {
    qs.addInternalSchedulerListener(this);       try {
        OperableTrigger trigger = (OperableTrigger) jec.getTrigger();
        JobDetail jobDetail = jec.getJobDetail();
      
        do {           JobExecutionException jobExEx = null;
          Job job = jec.getJobInstance();           ......
          try {
            log.debug("Calling execute on job " + jobDetail.getKey());
            //执行任务,调用RemoteHttpJobBean的executeInternal方法
            job.execute(jec);
            endTime = System.currentTimeMillis();
          } catch (JobExecutionException jee) {
            ......
          } catch (Throwable e) {
            ......
          }           jec.setJobRunTime(endTime - startTime);           ......           qs.notifyJobStoreJobComplete(trigger, jobDetail, instCode);
          break;
        } while (true);       } finally {
        qs.removeInternalSchedulerListener(this);
      }
    }
  }

以上,JobRunShell线程启动时,最终会调用RemoteHttpJobBean的executeInternal方法。

public class RemoteHttpJobBean extends QuartzJobBean {
  private static Logger logger = LoggerFactory.getLogger(RemoteHttpJobBean.class);   @Override
  protected void executeInternal(JobExecutionContext context) throws JobExecutionException {     // load jobId
    JobKey jobKey = context.getTrigger().getJobKey();
    Integer jobId = Integer.valueOf(jobKey.getName());     // 实际调用JobTriggerPoolHelper.addTrigger方法,看下面代码
    JobTriggerPoolHelper.trigger(jobId, TriggerTypeEnum.CRON, -1, null, null);
  } }
public class JobTriggerPoolHelper {
  ......
  private static JobTriggerPoolHelper helper = new JobTriggerPoolHelper();
  ......   public static void trigger(int jobId, TriggerTypeEnum triggerType,int failRetryCount,String executorShardingParam,String executorParam) {
    helper.addTrigger(jobId, triggerType, failRetryCount,
    executorShardingParam, executorParam);
  }   public void addTrigger(final int jobId, final TriggerTypeEnum triggerType,final int failRetryCount, final String executorShardingParam, final String executorParam) {     // 根据任务执行时间进行了线程池隔离,分快慢两个线程池,默认为快线程池
    ThreadPoolExecutor triggerPool_ = fastTriggerPool;
    AtomicInteger jobTimeoutCount = jobTimeoutCountMap.get(jobId);
    //在一定窗口期内(默认1分钟)达到条件(时间大于500毫秒10次)则进入慢线程池
    if (jobTimeoutCount!=null && jobTimeoutCount.get() > 10) {
      triggerPool_ = slowTriggerPool;
    }     // 通过线程池执行
    triggerPool_.execute(new Runnable() {
      @Override
      public void run() {
        long start = System.currentTimeMillis();
        try {
          // 重点关注,到此时才是真正触发执行
          XxlJobTrigger.trigger(jobId, triggerType, failRetryCount,executorShardingParam, executorParam);
        } catch (Exception e) {
          logger.error(e.getMessage(), e);
        } finally {           // 时间窗口为1分钟,超过就清空,进入下一个周期
          long minTim_now = System.currentTimeMillis()/60000;
          if (minTim != minTim_now) {
            minTim = minTim_now;
            jobTimeoutCountMap.clear();
          }           // 每超过500毫秒就记录超时一次
          long cost = System.currentTimeMillis()-start;
          if (cost > 500) {
            AtomicInteger timeoutCount = jobTimeoutCountMap.put(jobId, new AtomicInteger(1));
            if (timeoutCount != null) {
              timeoutCount.incrementAndGet();
            }
          }         }       }
    });
  }
}

以上代码,我们可以清楚看到xxl-job对于线程池隔离的处理规则,其实对于我们在设计同类问题的时候还是具有一定的参考价值。当然,本段代码最值得我们关注的还是其真正调用了XxlJobTrigger的trigger方法,这才是最终真正触发任务执行的。作了这么多准备,似乎好戏才真正开始。

public class XxlJobTrigger {
  ......   public static void trigger(int jobId, TriggerTypeEnum triggerType, int failRetryCount, String executorShardingParam, String executorParam) {
  // XXL_JOB_QRTZ_TRIGGER_INFO表获取任务信息
  XxlJobInfo jobInfo = XxlJobAdminConfig.getAdminConfig().getXxlJobInfoDao().loadById(jobId);
  if (jobInfo == null) {
    logger.warn(">>>>>>>>>>>> trigger fail, jobId invalid,jobId={}", jobId);
    return;
  }
  if (executorParam != null) {
    jobInfo.setExecutorParam(executorParam);
  }
  //算出失败重试次数
  int finalFailRetryCount = failRetryCount >= 0 ? failRetryCount :
  jobInfo.getExecutorFailRetryCount();   //XXL_JOB_QRTZ_TRIGGER_GROUP表获取执行器相关信息
  XxlJobGroup group = XxlJobAdminConfig.getAdminConfig().getXxlJobGroupDao().load(jobInfo.getJobGroup());   // 如果有分片,就进行分片处理
  int[] shardingParam = null;
  if (executorShardingParam!=null){
    String[] shardingArr = executorShardingParam.split("/");
      if (shardingArr.length==2 && isNumeric(shardingArr[0]) && isNumeric(shardingArr[1])) {
        shardingParam = new int[2];
        //分片序号
        shardingParam[0] = Integer.valueOf(shardingArr[0]);
        //总分片数
        shardingParam[1] = Integer.valueOf(shardingArr[1]);
      }
    }     if (ExecutorRouteStrategyEnum.SHARDING_BROADCAST==
      ExecutorRouteStrategyEnum.match(jobInfo.getExecutorRouteStrategy(), null)
      && group.getRegistryList()!=null && !group.getRegistryList().isEmpty()
      && shardingParam==null) {
      //如果是SHARDING_BROADCAST(分片广播策略),则对应所有执行器都将被触发
        for (int i = 0; i < group.getRegistryList().size(); i++) {
          //触发方法,重点关注,代码紧接
          processTrigger(group, jobInfo, finalFailRetryCount,
          triggerType, i, group.getRegistryList().size());
        }
    } else {
      if (shardingParam == null) {
        shardingParam = new int[]{0, 1};
    }
    //只触发一次
    processTrigger(group, jobInfo, finalFailRetryCount,
    triggerType, shardingParam[0], shardingParam[1]);
  } } ...... private static void processTrigger(XxlJobGroup group, XxlJobInfo jobInfo, int finalFailRetryCount, TriggerTypeEnum triggerType, int index, int total){
  // 阻塞处理策略
  ExecutorBlockStrategyEnum blockStrategy = ExecutorBlockStrategyEnum.match(jobInfo.getExecutorBlockStrategy(),ExecutorBlockStrategyEnum.SERIAL_EXECUTION);
  //路由策略
  ExecutorRouteStrategyEnum executorRouteStrategyEnum = ExecutorRouteStrategyEnum.match(jobInfo.getExecutorRouteStrategy(), null);
  //分片参数
  String shardingParam = (ExecutorRouteStrategyEnum.SHARDING_BROADCAST==executorRouteStrategyEnum)?String.valueOf(index).concat("/").concat(String.valueOf(total)):null;   // 记录日志
  XxlJobLog jobLog = new XxlJobLog();
  ......
  XxlJobAdminConfig.getAdminConfig().getXxlJobLogDao().save(jobLog);   // 组装TriggerParam参数
  TriggerParam triggerParam = new TriggerParam();
  ......   // 获取相应的执行器地址
  String address = null;
  ReturnT<String> routeAddressResult = null;
    if (group.getRegistryList()!=null && !group.getRegistryList().isEmpty()) {
      if (ExecutorRouteStrategyEnum.SHARDING_BROADCAST == executorRouteStrategyEnum) {
        //如果是分片广播,就根据当前分片序号,取出执行器地址
        if (index < group.getRegistryList().size()) {
          address = group.getRegistryList().get(index);
        } else {
          address = group.getRegistryList().get(0);
        }
      } else {
      //根据路由策略获取相应执行器地址
      //一些列路由策略继承自ExecutorRouter
      routeAddressResult = executorRouteStrategyEnum.getRouter().route(triggerParam, group.getRegistryList());
      if (routeAddressResult.getCode() == ReturnT.SUCCESS_CODE) {
        address = routeAddressResult.getContent();
      }
    }
  } else {
    routeAddressResult = new ReturnT<String>(ReturnT.FAIL_CODE, I18nUtil.getString("jobconf_trigger_address_empty"));
  }   //执行
  ReturnT<String> triggerResult = null;
  if (address != null) {
    //经过一系列组装参数,路由选址后,最终开始执行,该方法在下面,重点关注
    triggerResult = runExecutor(triggerParam, address);
  } else {
    triggerResult = new ReturnT<String>(ReturnT.FAIL_CODE, null);
  }
  ......
  //更新日志
  XxlJobAdminConfig.getAdminConfig().getXxlJobLogDao().updateTriggerInfo(jobLog);   logger.debug(">>>>>>>>>>> xxl-job trigger end, jobId:{}", jobLog.getId());
}
       /**
  * 最终执行的地方
  * @param triggerParam
  * @param address
  * @return
  */
  public static ReturnT<String> runExecutor(TriggerParam triggerParam, String address){
  ReturnT<String> runResult = null;
    try {
      //此处获取的为代理对象(注意)
      ExecutorBiz executorBiz = XxlJobDynamicScheduler.getExecutorBiz(address);
      //真正执行的为代理对象
      runResult = executorBiz.run(triggerParam);
    } catch (Exception e) {
      ......
    }     ......     return runResult;
  }
}

到此,我们离真相只差最后一步了。上面获取ExecutorBiz对象,然后通过ExecutorBiz进行最终执行,特别需要注意的是获取到的ExecutorBiz是个代理对象。如果没打开XxlJobDynamicScheduler.getExecutorBiz进行查看,直接点run, 你会觉得你的打开方式没对。

那么,最后,我们就来通过这个代理对象解开最后谜题吧。

public final class XxlJobDynamicScheduler {
  ......
  private static ConcurrentHashMap<String, ExecutorBiz> executorBizRepository = new ConcurrentHashMap<String, ExecutorBiz>();   /**
  * 获取ExecutorBiz代理对象
  * @param address
  * @return
  * @throws Exception
  */
  public static ExecutorBiz getExecutorBiz(String address) throws Exception {
  if (address==null || address.trim().length()==0) {
    return null;
  }   // 从缓存中获取
  address = address.trim();
  ExecutorBiz executorBiz = executorBizRepository.get(address);
  if (executorBiz != null) {
    return executorBiz;
  }     // 创建获取代理对象(重点看getObject方法)
    executorBiz = (ExecutorBiz) new XxlRpcReferenceBean(
    NetEnum.NETTY_HTTP,
    Serializer.SerializeEnum.HESSIAN.getSerializer(),
    CallType.SYNC,
    LoadBalance.ROUND,
    ExecutorBiz.class,
    null,
    5000,
    address,
    XxlJobAdminConfig.getAdminConfig().getAccessToken(),
    null,
    null).getObject();     //设置缓存
    executorBizRepository.put(address, executorBiz);
    return executorBiz;
  }
}

看看代理对象内部实现

public class XxlRpcReferenceBean {

  ......

  //重点关注的方法, 被代理对象的run方法最终会到此对象的invoke
  public Object getObject() {
  return Proxy.newProxyInstance(Thread.currentThread().getContextClassLoader(), new Class[] { iface },
    new InvocationHandler() {
      @Override
      public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
        ......
        // 组装RPC请求参数
        XxlRpcRequest xxlRpcRequest = new XxlRpcRequest();
        xxlRpcRequest.setRequestId(UUID.randomUUID().toString());
        xxlRpcRequest.setCreateMillisTime(System.currentTimeMillis());
        xxlRpcRequest.setAccessToken(accessToken);
        xxlRpcRequest.setClassName(className);
        xxlRpcRequest.setMethodName(methodName);
        xxlRpcRequest.setParameterTypes(parameterTypes);
        xxlRpcRequest.setParameters(parameters);
             ......
        //最终都会通过此方法发起RPC
        //此处的client为上面创建代理对象时传入的NetEnum.NETTY_HTTP
        //即NettyHttpClient对象
        //最终会通过netty来与执行器发起通信,细节不再继续追溯
        client.asyncSend(finalAddress, xxlRpcRequest);         ......
      }
    });
  }
}

到此,xxl-job调度中心的初始化和调度执行流程,我们大概都知道了。那么,当调度中心向执行器发起调度请求时,执行器又是怎么做的呢?

那就还得再从执行器的初始化说起。

执行器

我们还是以spring boot版本的执行器为例。

初始化

首先会创建并初始化 XxlJobSpringExecutor实例,如下:

@Bean(initMethod = "start", destroyMethod = "destroy")
public XxlJobSpringExecutor xxlJobExecutor() { logger.info(">>>>>>>>>>> xxl-job config init.");
XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
xxlJobSpringExecutor.setAppName(appName);
xxlJobSpringExecutor.setIp(ip);
xxlJobSpringExecutor.setPort(port);
xxlJobSpringExecutor.setAccessToken(accessToken);
xxlJobSpringExecutor.setLogPath(logPath);
xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);
return xxlJobSpringExecutor;
}

在初始化完成后会调用 XxlJobSpringExecutor 的start方法。

public class XxlJobSpringExecutor extends XxlJobExecutor implements ApplicationContextAware {

    @Override
public void start() throws Exception {
// JobHandler注解名与spring 托管的bean(我们的job)建立映射关系并缓存到Map
initJobHandlerRepository(applicationContext); // 指定使用SpringGlueFactory, 不在我们本次探讨范围,暂时忽略
GlueFactory.refreshInstance(1);
// 调用父类XxlJobExecutor的start方法
super.start();
}
}

我们看看initJobHandlerRepository方法。

private void initJobHandlerRepository(ApplicationContext applicationContext){

    if (applicationContext == null) {
return;
}
// 获取带有@JobHandler修饰的bean
Map<String, Object> serviceBeanMap = applicationContext.getBeansWithAnnotation(JobHandler.class);
if (serviceBeanMap!=null && serviceBeanMap.size()>0) {
for (Object serviceBean : serviceBeanMap.values()) {
if (serviceBean instanceof IJobHandler){
//获取@JobHandler值
String name = serviceBean.getClass().getAnnotation(JobHandler.class).value();
IJobHandler handler = (IJobHandler) serviceBean;
if (loadJobHandler(name) != null) {
throw new RuntimeException("xxl-job jobhandler naming conflicts.");
} //缓存到Map. 建立映射关系
registJobHandler(name, handler);
}
}
}
} public static IJobHandler registJobHandler(String name, IJobHandler jobHandler){
return jobHandlerRepository.put(name, jobHandler);
}

接下来看父类XxlJobExecutor 的start方法。

public class XxlJobExecutor  {
......
public void start() throws Exception {
// 设置job的日志目录
XxlJobFileAppender.initLogPath(logPath);
// 初始化AdminBiz代理对象,该代理对象用于与调度中心进行RPC通信
initAdminBizList(adminAddresses, accessToken);
// 日志清理线程
JobLogFileCleanThread.getInstance().start(logRetentionDays);
// 回调线程(RPC回调到调度中心)
TriggerCallbackThread.getInstance().start();
//启动服务并向调度中心发起注册请求
port = port>0?port: NetUtil.findAvailablePort(9999);
ip = (ip!=null&&ip.trim().length()>0)?ip: IpUtil.getIp();
initRpcProvider(ip, port, appName, accessToken);
}
......
}

其中,我们重点关注initAdminBizList 和 initRpcProvider 两个方法。

......

private static List<AdminBiz> adminBizList;

private void initAdminBizList(String adminAddresses, String accessToken) throws Exception {
serializer = Serializer.SerializeEnum.HESSIAN.getSerializer();
//如果是有多个调度中心地址,则创建多个实例
if (adminAddresses!=null && adminAddresses.trim().length()>0) {
for (String address: adminAddresses.trim().split(",")) {
if (address!=null && address.trim().length()>0) {
//http://调度中心地址/api
String addressUrl = address.concat(AdminBiz.MAPPING);
//创建代理对象,似曾相识?
//这在我们讲调度中心的时候,已经讲过。
AdminBiz adminBiz = (AdminBiz) new XxlRpcReferenceBean(
NetEnum.NETTY_HTTP,
serializer,
CallType.SYNC,
LoadBalance.ROUND,
AdminBiz.class,
null,
10000,
addressUrl,
accessToken,
null,
null
).getObject(); if (adminBizList == null) {
adminBizList = new ArrayList<AdminBiz>();
} //代理对象加入缓存
adminBizList.add(adminBiz);
}
}
}
}
......

接下来,我们再看看 initRpcProvider 这个最关键的方法之一,其包含了服务的启动。

......

private XxlRpcProviderFactory xxlRpcProviderFactory = null;

private void initRpcProvider(String ip, int port, String appName, String accessToken) throws Exception {

    // 获取当前服务地址 (ip:port)
String address = IpUtil.getIpPort(ip, port);
//组装注册参数
Map<String, String> serviceRegistryParam = new HashMap<String, String>();
serviceRegistryParam.put("appName", appName);
serviceRegistryParam.put("address", address);
xxlRpcProviderFactory = new XxlRpcProviderFactory(); //最需要注意的是
//NetEnum.NETTY_HTTP指定使用NettyHttpServer作为我们的服务器
//ExecutorServiceRegistry为我们的服务注册的执行器
xxlRpcProviderFactory.initConfig(NetEnum.NETTY_HTTP, Serializer.SerializeEnum.HESSIAN.getSerializer(), ip, port, accessToken, ExecutorServiceRegistry.class, serviceRegistryParam); // add services
xxlRpcProviderFactory.addService(ExecutorBiz.class.getName(), null, new ExecutorBizImpl()); // 启动服务,并向调度中心发起注册请求
xxlRpcProviderFactory.start();
} ......

接下来,我们直接看启动服务的方法。

public class XxlRpcProviderFactory {

    ......
private Server server;
private ServiceRegistry serviceRegistry;
private String serviceAddress; public void start() throws Exception {
// 本(执行器)服务的地址
serviceAddress = IpUtil.getIpPort(this.ip, port);
// 即上面指定的NettyHttpServer
server = netType.serverClass.newInstance();
// 启动后回调此方法
server.setStartedCallback(new BaseCallback() {
@Override
public void run() throws Exception {
if (serviceRegistryClass != null) {
//即上面指定的ExecutorServiceRegistry
serviceRegistry = serviceRegistryClass.newInstance();
// 向调度中心发起注册请求
serviceRegistry.start(serviceRegistryParam);
if (serviceData.size() > 0) {
serviceRegistry.registry(serviceData.keySet(), serviceAddress);
}
}
}
});
...... //启动
server.start(this);
}
......
}

以上,会启动NettyHttpServer服务, 通过设置启动回调来向调度中心发起注册请求。接下来,看看是怎么注册的。

@Override

public void start(Map<String, String> param) {

    //调用ExecutorRegistryThread对象的start方法

    ExecutorRegistryThread.getInstance()

        .start(param.get("appName"), param.get("address"));

}
public class ExecutorRegistryThread {

    private static Logger logger = LoggerFactory.getLogger(ExecutorRegistryThread.class);
private static ExecutorRegistryThread instance = new ExecutorRegistryThread();
public static ExecutorRegistryThread getInstance(){
return instance;
}
private Thread registryThread;
private volatile boolean toStop = false;
public void start(final String appName, final String address){
......
registryThread = new Thread(new Runnable() {
@Override
public void run() {
while (!toStop) {
try {
//注册参数
RegistryParam registryParam = new RegistryParam(RegistryConfig.RegistType.EXECUTOR.name(), appName, address);
for (AdminBiz adminBiz: XxlJobExecutor.getAdminBizList()) {
try {
//真正发起注册的方法
//adminBiz对象即为我们上面的代理对象
//触发的实际为代理对象的invoke方法
ReturnT<String> registryResult = adminBiz.registry(registryParam);
if (registryResult!=null && ReturnT.SUCCESS_CODE == registryResult.getCode()) {
registryResult = ReturnT.SUCCESS;
logger.debug(">>>>>>>>>>> xxl-job registry success, registryParam:{}, registryResult:{}", new Object[]{registryParam, registryResult});
break;
} else {
logger.info(">>>>>>>>>>> xxl-job registry fail, registryParam:{}, registryResult:{}", new Object[]{registryParam, registryResult});
}
} catch (Exception e) {
logger.info(">>>>>>>>>>> xxl-job registry error, registryParam:{}", registryParam, e);
}
}
} catch (Exception e) {
if (!toStop) {
logger.error(e.getMessage(), e);
}
} try {
if (!toStop) {
//默认每隔30S触发一次注册
TimeUnit.SECONDS.sleep(RegistryConfig.BEAT_TIMEOUT);
}
} catch (InterruptedException e) {
if (!toStop) {
logger.warn(">>>>>>>>>>> xxl-job, executor registry thread interrupted, error msg:{}", e.getMessage());
}
}
} //移除注册信息
........
});
registryThread.setDaemon(true);
registryThread.setName("xxl-job, executor ExecutorRegistryThread");
//启动线程
registryThread.start();
} ...... public void toStop() {
toStop = true;
// interrupt and wait
registryThread.interrupt();
try {
registryThread.join();
} catch (InterruptedException e) {
logger.error(e.getMessage(), e);
}
}
}

以上,通过启动ExecutorRegistryThread线程进行注册,最终发起rpc请求的仍然是我们之前(调度中心)介绍的代理对象实例,就不作过多描述,该线程默认情况下会每隔30s发送心跳到调度中心。

以上即为主要初始化流程。那么,我们的执行中心到底是如何接收调度中心发起的调度请求的呢?

执行流程

在回到NettyHttpServer的启动流程。

public class NettyHttpServer extends Server  {
private Thread thread;
@Override
public void start(final XxlRpcProviderFactory xxlRpcProviderFactory) throws Exception {
thread = new Thread(new Runnable() {
@Override
public void run() {
......
try {
// start server
ServerBootstrap bootstrap = new ServerBootstrap();
bootstrap.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
public void initChannel(SocketChannel ch) throws Exception {
ch.pipeline().addLast(new HttpServerCodec());
ch.pipeline().addLast(new HttpObjectAggregator(5*1024*1024));
//重点关注
ch.pipeline().addLast(new NettyHttpServerHandler(xxlRpcProviderFactory, serverHandlerPool));
}
}).childOption(ChannelOption.SO_KEEPALIVE, true);
......
}
......
}
});
thread.setDaemon(true);
thread.start();
}
...... }

以上值得注意的是,在server启动时,会初始化NettyHttpServerHandler实例,当请求到来时,会到NettyHttpServerHandler的channelRead0方法。

public class NettyHttpServerHandler extends SimpleChannelInboundHandler<FullHttpRequest> {

    private static final Logger logger = LoggerFactory.getLogger(NettyHttpServerHandler.class);
private XxlRpcProviderFactory xxlRpcProviderFactory;
private ThreadPoolExecutor serverHandlerPool; public NettyHttpServerHandler(final XxlRpcProviderFactory xxlRpcProviderFactory, final ThreadPoolExecutor serverHandlerPool) {
this.xxlRpcProviderFactory = xxlRpcProviderFactory;
this.serverHandlerPool = serverHandlerPool;
}
//处理请求
@Override
protected void channelRead0(final ChannelHandlerContext ctx, FullHttpRequest msg) throws Exception {
// request parse
final byte[] requestBytes = ByteBufUtil.getBytes(msg.content());
final String uri = msg.uri();
final boolean keepAlive = HttpUtil.isKeepAlive(msg);
// 通过线程池异步执行
serverHandlerPool.execute(new Runnable() {
@Override
public void run() {
process(ctx, uri, requestBytes, keepAlive);
}
});
}
private void process(ChannelHandlerContext ctx, String uri, byte[] requestBytes, boolean keepAlive){
String requestId = null;
try {
if ("/services".equals(uri)) { // services mapping
// request
StringBuffer stringBuffer = new StringBuffer("<ui>");
for (String serviceKey: xxlRpcProviderFactory.getServiceData().keySet()) {
stringBuffer.append("<li>").append(serviceKey).append(": ").append(xxlRpcProviderFactory.getServiceData().get(serviceKey)).append("</li>");
}
stringBuffer.append("</ui>");
// response serialize
byte[] responseBytes = stringBuffer.toString().getBytes("UTF-8");
// response-write
writeResponse(ctx, keepAlive, responseBytes);
} else {
// valid
if (requestBytes.length == 0) {
throw new XxlRpcException("xxl-rpc request data empty.");
}
// request deserialize
XxlRpcRequest xxlRpcRequest = (XxlRpcRequest) xxlRpcProviderFactory.getSerializer().deserialize(requestBytes, XxlRpcRequest.class);
requestId = xxlRpcRequest.getRequestId();
// 处理请求
XxlRpcResponse xxlRpcResponse = xxlRpcProviderFactory.invokeService(xxlRpcRequest);
// response serialize
byte[] responseBytes = xxlRpcProviderFactory.getSerializer().serialize(xxlRpcResponse);
// response-write
writeResponse(ctx, keepAlive, responseBytes);
}
} catch (Exception e) {
......
}
}
...... }
public XxlRpcResponse invokeService(XxlRpcRequest xxlRpcRequest) {

    ......
String serviceKey = makeServiceKey(xxlRpcRequest.getClassName(), xxlRpcRequest.getVersion());
//取出ExecutorBizImpl实例
Object serviceBean = serviceData.get(serviceKey);
......
try {
// 反射调用ExecutorBizImpl对象run方法
Class<?> serviceClass = serviceBean.getClass();
String methodName = xxlRpcRequest.getMethodName();
Class<?>[] parameterTypes = xxlRpcRequest.getParameterTypes();
Object[] parameters = xxlRpcRequest.getParameters();
Method method = serviceClass.getMethod(methodName, parameterTypes);
method.setAccessible(true);
Object result = method.invoke(serviceBean, parameters);
xxlRpcResponse.setResult(result);
} catch (Throwable t) {
// catch error
logger.error("xxl-rpc provider invokeService error.", t);
xxlRpcResponse.setErrorMsg(ThrowableUtil.toString(t));
}
return xxlRpcResponse; }
public class ExecutorBizImpl implements ExecutorBiz {

    ......
@Override
public ReturnT<String> run(TriggerParam triggerParam) { // 缓存获取JobThread对象
JobThread jobThread = XxlJobExecutor.loadJobThread(triggerParam.getJobId());
IJobHandler jobHandler = jobThread!=null?jobThread.getHandler():null;
String removeOldReason = null; GlueTypeEnum glueTypeEnum = GlueTypeEnum.match(triggerParam.getGlueType());
if (GlueTypeEnum.BEAN == glueTypeEnum) {
// 缓存中获取IJobHandler对象(即我们的业务job)
// 之前通过扫描注解存入缓存
IJobHandler newJobHandler = XxlJobExecutor.loadJobHandler(triggerParam.getExecutorHandler());
// valid old jobThread
if (jobThread!=null && jobHandler != newJobHandler) {
// change handler, need kill old thread
removeOldReason = "change jobhandler or glue type, and terminate the old job thread.";
jobThread = null;
jobHandler = null;
}
// valid handler
if (jobHandler == null) {
jobHandler = newJobHandler;
if (jobHandler == null) {
return new ReturnT<String>(ReturnT.FAIL_CODE, "job handler [" + triggerParam.getExecutorHandler() + "] not found.");
}
}
} else if (GlueTypeEnum.GLUE_GROOVY == glueTypeEnum) {
// valid old jobThread
if (jobThread != null &&
!(jobThread.getHandler() instanceof GlueJobHandler
&& ((GlueJobHandler) jobThread.getHandler()).getGlueUpdatetime()==triggerParam.getGlueUpdatetime() )) {
// change handler or gluesource updated, need kill old thread
removeOldReason = "change job source or glue type, and terminate the old job thread.";
jobThread = null;
jobHandler = null;
} // valid handler
if (jobHandler == null) {
try {
//从DB中获取源码,通过groovy进行加载并实例化
IJobHandler originJobHandler = GlueFactory.getInstance().loadNewInstance(triggerParam.getGlueSource());
jobHandler = new GlueJobHandler(originJobHandler, triggerParam.getGlueUpdatetime());
} catch (Exception e) {
logger.error(e.getMessage(), e);
return new ReturnT<String>(ReturnT.FAIL_CODE, e.getMessage());
}
}
} else if (glueTypeEnum!=null && glueTypeEnum.isScript()) {
// valid old jobThread
if (jobThread != null &&
!(jobThread.getHandler() instanceof ScriptJobHandler
&& ((ScriptJobHandler) jobThread.getHandler()).getGlueUpdatetime()==triggerParam.getGlueUpdatetime() )) {
// change script or gluesource updated, need kill old thread
removeOldReason = "change job source or glue type, and terminate the old job thread.";
jobThread = null;
jobHandler = null;
} // valid handler
if (jobHandler == null) {
//读取脚本,写入文件,最终执行通过commons-exec
jobHandler = new ScriptJobHandler(triggerParam.getJobId(), triggerParam.getGlueUpdatetime(), triggerParam.getGlueSource(), GlueTypeEnum.match(triggerParam.getGlueType()));
}
} else {
return new ReturnT<String>(ReturnT.FAIL_CODE, "glueType[" + triggerParam.getGlueType() + "] is not valid.");
} // 阻塞策略
if (jobThread != null) {
ExecutorBlockStrategyEnum blockStrategy = ExecutorBlockStrategyEnum.match(triggerParam.getExecutorBlockStrategy(), null);
if (ExecutorBlockStrategyEnum.DISCARD_LATER == blockStrategy) {
// 丢弃后续调度
if (jobThread.isRunningOrHasQueue()) {
return new ReturnT<String>(ReturnT.FAIL_CODE, "block strategy effect:"+ExecutorBlockStrategyEnum.DISCARD_LATER.getTitle());
}
} else if (ExecutorBlockStrategyEnum.COVER_EARLY == blockStrategy) {
// 覆盖之前调度
if (jobThread.isRunningOrHasQueue()) {
removeOldReason = "block strategy effect:" + ExecutorBlockStrategyEnum.COVER_EARLY.getTitle(); jobThread = null;
}
} else {
// just queue trigger
}
} // 第一次执行或者是覆盖之前调度策略
if (jobThread == null) {
//开启线程,执行任务
jobThread = XxlJobExecutor.registJobThread(triggerParam.getJobId(), jobHandler, removeOldReason);
} // 触发任务入队
ReturnT<String> pushResult = jobThread.pushTriggerQueue(triggerParam);
return pushResult;
}
}

至此,我们离真相只差最后一步,最后再看看XxlJobExecutor.registJobThread

......
private static ConcurrentHashMap<Integer, JobThread> jobThreadRepository = new ConcurrentHashMap<Integer, JobThread>(); public static JobThread registJobThread(int jobId, IJobHandler handler, String removeOldReason){
//新线程执行
JobThread newJobThread = new JobThread(jobId, handler);
//线程执行
newJobThread.start();
logger.info(">>>>>>>>>>> xxl-job regist JobThread success, jobId:{}, handler:{}", new Object[]{jobId, handler});
//放入缓存
JobThread oldJobThread = jobThreadRepository.put(jobId, newJobThread);
if (oldJobThread != null) {
//旧任务线程停止,覆盖策略
oldJobThread.toStop(removeOldReason);
oldJobThread.interrupt();
}
return newJobThread;
}
......
public class JobThread extends Thread{

    private static Logger logger = LoggerFactory.getLogger(JobThread.class);
private int jobId;
private IJobHandler handler;
private LinkedBlockingQueue<TriggerParam> triggerQueue;
private Set<Integer> triggerLogIdSet; // avoid repeat trigger for the same TRIGGER_LOG_ID
private volatile boolean toStop = false;
private String stopReason;
private boolean running = false; // if running job
private int idleTimes = 0; // idel times public JobThread(int jobId, IJobHandler handler) {
this.jobId = jobId;
this.handler = handler;
this.triggerQueue = new LinkedBlockingQueue<TriggerParam>();
this.triggerLogIdSet = Collections.synchronizedSet(new HashSet<Integer>());
} public IJobHandler getHandler() {
return handler;
} /**
* trigger入队,执行的时候出队
*
* @param triggerParam
* @return
*/
public ReturnT<String> pushTriggerQueue(TriggerParam triggerParam) {
// avoid repeat
if (triggerLogIdSet.contains(triggerParam.getLogId())) {
logger.info(">>>>>>>>>>> repeate trigger job, logId:{}", triggerParam.getLogId());
return new ReturnT<String>(ReturnT.FAIL_CODE, "repeate trigger job, logId:" + triggerParam.getLogId());
}
triggerLogIdSet.add(triggerParam.getLogId());
triggerQueue.add(triggerParam);
return ReturnT.SUCCESS;
} /**
* kill job thread
*
* @param stopReason
*/
public void toStop(String stopReason) {
/**
* Thread.interrupt只支持终止线程的阻塞状态(wait、join、sleep),
* 在阻塞出抛出InterruptedException异常,但是并不会终止运行的线程本身;
* 所以需要注意,此处彻底销毁本线程,需要通过共享变量方式;
*/
this.toStop = true;
this.stopReason = stopReason;
} /**
* is running job
* @return
*/
public boolean isRunningOrHasQueue() {
return running || triggerQueue.size()>0;
} @Override
public void run() {
// init
try {
handler.init();
} catch (Throwable e) {
logger.error(e.getMessage(), e);
} // execute
while(!toStop){
running = false;
idleTimes++;
TriggerParam triggerParam = null;
ReturnT<String> executeResult = null;
try {
//出队消费,3秒获取不到就返回null
triggerParam = triggerQueue.poll(3L, TimeUnit.SECONDS);
if (triggerParam!=null) {
running = true;
idleTimes = 0;
triggerLogIdSet.remove(triggerParam.getLogId());
// 日志 "logPath/yyyy-MM-dd/9999.log"
String logFileName = XxlJobFileAppender.makeLogFileName(new Date(triggerParam.getLogDateTim()), triggerParam.getLogId());
XxlJobFileAppender.contextHolder.set(logFileName);
//任务分片数据
ShardingUtil.setShardingVo(new ShardingUtil.ShardingVO(triggerParam.getBroadcastIndex(), triggerParam.getBroadcastTotal()));
// execute
XxlJobLogger.log("<br>----------- xxl-job job execute start -----------<br>----------- Param:" + triggerParam.getExecutorParams());
if (triggerParam.getExecutorTimeout() > 0) {
//有超时限制
Thread futureThread = null;
try {
final TriggerParam triggerParamTmp = triggerParam;
FutureTask<ReturnT<String>> futureTask = new FutureTask<ReturnT<String>>(new Callable<ReturnT<String>>() {
@Override
public ReturnT<String> call() throws Exception {
//执行业务job
return handler.execute(triggerParamTmp.getExecutorParams());
}
});
futureThread = new Thread(futureTask);
futureThread.start();
//可能超时
executeResult = futureTask.get(triggerParam.getExecutorTimeout(), TimeUnit.SECONDS);
} catch (TimeoutException e) {
XxlJobLogger.log("<br>----------- xxl-job job execute timeout");
XxlJobLogger.log(e);
executeResult = new ReturnT<String>(IJobHandler.FAIL_TIMEOUT.getCode(), "job execute timeout ");
} finally {
futureThread.interrupt();
}
} else {
// 无超时限制的,直接执行
executeResult = handler.execute(triggerParam.getExecutorParams());
}
......

// destroy
try {
handler.destroy();
} catch (Throwable e) {
logger.error(e.getMessage(), e);
}
logger.info(">>>>>>>>>>> xxl-job JobThread stoped, hashCode:{}", Thread.currentThread());
}
}

我们的业务基本,都是实现IJobHandler的excute方法,因此,最终就会到我们的业务方法。

到此,我们的xxl-job之旅就暂且告一段落。其实其中还有不少内容值得去深探,有兴趣的可以继续去看看。

上一篇:linux原始套接字(1)-arp请求与接收


下一篇:从定时器的选型,到透过源码看XXL-Job(上)