机器学习笔记(二)- from Andrew Ng的教学视频

省略了Octave的使用方法结束,以后用得上再看吧

week three:

Logistic Regression:

用于0-1分类

Hypothesis Representation:

机器学习笔记(二)- from Andrew Ng的教学视频

机器学习笔记(二)- from Andrew Ng的教学视频:Sigmoid function or Logistic function

Decision boundary:

theta 的转置*小x>=0 即为boundary

may :Non-linear decision boundaries,构造x的多项式项

Cost function:

机器学习笔记(二)- from Andrew Ng的教学视频

Simplified cost function and gradient descent:

由于y只有两个值,所以合并:

机器学习笔记(二)- from Andrew Ng的教学视频

对上式求最小偏导:

机器学习笔记(二)- from Andrew Ng的教学视频(应该是忽略了分母)

Advanced optimization:

Conjugate gradient,BFGS,L-BFGS(有待查询学习)

Multi-class classification: One-vs-all:

对每个类使用一次Logistic Regression分类,确定参数之后,求出max的那一类:called One-vs-all(一对多方法)。

Regularization:The problem of overfitting

overfiting:reduce number of features or regularization

linear regression:

机器学习笔记(二)- from Andrew Ng的教学视频

Gradient descent:

机器学习笔记(二)- from Andrew Ng的教学视频

Normal equation:

机器学习笔记(二)- from Andrew Ng的教学视频

Regularized logistic regression:like linear regression,add extra in J(theta)

attention : 多的正则项是从1开始的,对于0不做惩罚。

上一篇:[BZOJ2326] [HNOI2011] 数学作业 (矩阵乘法)


下一篇:ARMV8 datasheet学习笔记4:AArch64系统级体系结构之编程模型(2)- 寄存器