[BZOJ4651][NOI2016]网格(Tarjan)

下面直接给出结论,相关证明见官方题解。

1.若跳蚤数不超过1或仅有两只跳蚤且相邻,则答案为-1。

2.若跳蚤形成的连通块个数大于1,则答案为0。

3.若跳蚤之间建图存在割点,则答案为1。

4.否则为2。

这样就有70分了。但是图太大了,显然有很多没用的跳蚤被统计进答案。

考虑到造成不连通的情况一定在蛐蛐附近,于是将每个蛐蛐周围5*5的格子中的24个跳蚤全部取出,内圈8个称为一级空地,外圈称为二级空地。之考虑这些点即可,复杂度就只与蛐蛐个数相关了。

将所有被取出的跳蚤建图,求连通块个数和割点即可。

几个注意点:

1.特判n=1或m=1的情况。

2.只有一级空地与在网格边缘的二级空地成为割点答案才能是0。

3.关于常数问题:不要用memset,判断元素是否存在用S.find(x)!=S.end()不要用S.count(x)。

4.下面代码在UOJ被叉掉了,以及O2会产生各种无解的错误,比如bool tag[N]如果写在int那行的上面就会被系统杀死。

 #include<map>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mem(a) memset(a,0,sizeof(a))
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
using namespace std; const int N=;
const int dx[]={,,,,-},dy[]={,,,-,};
int T,n,m,c,cnt,tim,nd,id[][],dfn[N],low[N],fa[N],h[N],nxt[N<<],to[N<<];
bool tag[N];
struct P{ int x,y; }p[N],s[];
map<P,int>S;
bool operator <(const P &a,const P &b){ return (a.x==b.x) ? a.y<b.y : a.x<b.x; }
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; }
int get(int x){ return (fa[x]==x) ? x : fa[x]=get(fa[x]); }
bool chk(int x,int y){ return x>= && x<=n && y>= && y<=m; } inline int rd(){
int x=; char ch=getchar();
while (ch<'' || ch>'') ch=getchar();
while (ch>='' && ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
return x;
} bool tarjan(int x,int fa){
dfn[x]=low[x]=++tim; int son=;
For(i,x) if ((k=to[i])!=fa){
if (dfn[k]) low[x]=min(low[x],dfn[k]);
else{
if (tarjan(k,x)) return ;
son++; low[x]=min(low[x],low[k]);
if (((fa && low[k]>=dfn[x]) || (!fa && son>)) && tag[x]) return ;
}
}
return ;
} int main(){
freopen("grid.in","r",stdin);
freopen("grid.out","w",stdout);
for (scanf("%d",&T); T--; ){
scanf("%d%d%d",&n,&m,&c); cnt=; nd=; tim=; S.clear();
rep(i,,c) p[i].x=rd(),p[i].y=rd(),S[p[i]]=-;
if (1ll*n*m-c<=){ puts("-1"); continue; }
if (1ll*n*m-c==){
int tot=;
rep(i,,n) rep(j,,m) if (S.find((P){i,j})==S.end()) s[++tot]=(P){i,j};
if (abs(s[].x-s[].x)+abs(s[].y-s[].y)==) puts("-1"); else puts("");
continue;
}
rep(i,,c){
rep(x,-,) rep(y,-,) if (chk(p[i].x+x,p[i].y+y)){
int x1=p[i].x+x,y1=p[i].y+y;
if (S.find((P){x1,y1})==S.end())
id[x+][y+]=++nd,S[(P){x1,y1}]=nd,tag[nd]=,h[nd]=,dfn[nd]=,fa[nd]=nd;
else id[x+][y+]=S[(P){x1,y1}];
if (x1== || x1==n || y1== || y1==m || (abs(x)<= && abs(y)<=)) tag[id[x+][y+]]=;
}else S[(P){p[i].x+x,p[i].y+y}]=-,id[x+][y+]=-;
rep(x,,) rep(y,,) rep(k,,){
int x1=x+dx[k],y1=y+dy[k];
if (x1< || x1> || y1< || y1> || id[x][y]==- || id[x1][y1]==-) continue;
add(id[x][y],id[x1][y1]);
fa[get(id[x1][y1])]=get(id[x][y]);
}
}
bool flag=;
rep(i,,c){
int t=-;
rep(x,-,) rep(y,-,){
int w=S[(P){p[i].x+x,p[i].y+y}];
if (w==-) continue;
if (t==-) t=get(w); else { if (t!=get(w)){ flag=; break; } }
}
if (flag) break;
}
if (flag){ puts(""); continue; }
if (n== || m==){ puts(""); continue; }
rep(i,,nd) if (!dfn[i] && tarjan(i,)) { puts(""); flag=; break; }
if (!flag) puts("");
}
return ;
}
上一篇:Hard 随机选择subset @CareerCup


下一篇:Xcode7下模拟器输入文本无法显示系统键盘的解决办法