我正在使用以下过程为给定范围内的正方形网格(左下->右上)计算给定半径的六边形多边形坐标:
def calc_polygons(startx, starty, endx, endy, radius):
sl = (2 * radius) * math.tan(math.pi / 6)
# calculate coordinates of the hexagon points
p = sl * 0.5
b = sl * math.cos(math.radians(30))
w = b * 2
h = 2 * sl
origx = startx
origy = starty
# offsets for moving along and up rows
xoffset = b
yoffset = 3 * p
polygons = []
row = 1
counter = 0
while starty < endy:
if row % 2 == 0:
startx = origx + xoffset
else:
startx = origx
while startx < endx:
p1x = startx
p1y = starty + p
p2x = startx
p2y = starty + (3 * p)
p3x = startx + b
p3y = starty + h
p4x = startx + w
p4y = starty + (3 * p)
p5x = startx + w
p5y = starty + p
p6x = startx + b
p6y = starty
poly = [
(p1x, p1y),
(p2x, p2y),
(p3x, p3y),
(p4x, p4y),
(p5x, p5y),
(p6x, p6y),
(p1x, p1y)]
polygons.append(poly)
counter += 1
startx += w
starty += yoffset
row += 1
return polygons
这对于数以百万计的多边形来说效果很好,但是对于大型网格,它会迅速减慢速度(并占用大量内存).我想知道是否有一种方法可以优化此效果,可能是将根据范围计算的顶点的numpy数组压缩在一起,然后完全删除循环-但是,我的几何形状对此还不够好,因此,任何建议欢迎改进.
解决方法:
将问题分解为规则的正方形网格(不连续).一个列表将包含所有移位的十六进制(即偶数行),而另一个列表将包含未移位的(直线)行.
def calc_polygons_new(startx, starty, endx, endy, radius):
sl = (2 * radius) * math.tan(math.pi / 6)
# calculate coordinates of the hexagon points
p = sl * 0.5
b = sl * math.cos(math.radians(30))
w = b * 2
h = 2 * sl
# offsets for moving along and up rows
xoffset = b
yoffset = 3 * p
row = 1
shifted_xs = []
straight_xs = []
shifted_ys = []
straight_ys = []
while startx < endx:
xs = [startx, startx, startx + b, startx + w, startx + w, startx + b, startx]
straight_xs.append(xs)
shifted_xs.append([xoffset + x for x in xs])
startx += w
while starty < endy:
ys = [starty + p, starty + (3 * p), starty + h, starty + (3 * p), starty + p, starty, starty + p]
(straight_ys if row % 2 else shifted_ys).append(ys)
starty += yoffset
row += 1
polygons = [zip(xs, ys) for xs in shifted_xs for ys in shifted_ys] + [zip(xs, ys) for xs in straight_xs for ys in straight_ys]
return polygons
如您所预料的,压缩可提高性能,特别是对于较大的网格.在我的笔记本电脑上,当我计算30个六边形网格时,我看到了3倍的加速-2900六边形网格时是10倍的速度.
>>> from timeit import Timer
>>> t_old = Timer('calc_polygons_orig(1, 1, 100, 100, 10)', 'from hexagons import calc_polygons_orig')
>>> t_new = Timer('calc_polygons_new(1, 1, 100, 100, 10)', 'from hexagons import calc_polygons_new')
>>> t_old.timeit(20000)
9.23395299911499
>>> t_new.timeit(20000)
3.12791109085083
>>> t_old_large = Timer('calc_polygons_orig(1, 1, 1000, 1000, 10)', 'from hexagons import calc_polygons_orig')
>>> t_new_large = Timer('calc_polygons_new(1, 1, 1000, 1000, 10)', 'from hexagons import calc_polygons_new')
>>> t_old_large.timeit(200)
9.09613299369812
>>> t_new_large.timeit(200)
0.7804560661315918
可能有机会创建一个迭代器而不是列表来节省内存.取决于代码如何使用多边形列表.