UVA1533-Moving Pegs(BFS+状态压缩)

Problem UVA1533-Moving Pegs

Accept:106  Submit:375

Time Limit: 3000 mSec

UVA1533-Moving Pegs(BFS+状态压缩) Problem Description

UVA1533-Moving Pegs(BFS+状态压缩)

UVA1533-Moving Pegs(BFS+状态压缩) Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case is a single integer which means an empty hole number.

UVA1533-Moving Pegs(BFS+状态压缩) Output

For each test case, the first line of the output file contains an integer which is the number of jumps in a shortest sequence of moving pegs. In the second line of the output file, print a sequence of peg movements. Apegmovementconsistsofapairofintegersseparatedbyaspace. Thefirstintegerofthe pair denotes the hole number of the peg that is moving, and the second integer denotes a destination (empty) hole number.

UVA1533-Moving Pegs(BFS+状态压缩) Sample Input

1
5
 
 

UVA1533-Moving Pegs(BFS+状态压缩) Sample Ouput

10

12 5 3 8 15 12 6 13 7 9 1 7 10 8 7 9 11 14 14 5

题解:15个洞,二进制存储状态是比较正的思路。接下来就是水题了,只不过是把矩形地图换成了三角形地图,预处理一个临接表,存一下对于每个点能到哪些点。因为要字典序,因此顺序很重要,稍加分析就知道周围6个位置的大小关系,注意对于15个记录相邻点的数组,一定要统一顺序,除了字典序,还因为有可能要顺着一个方向走几格,这时顺序一致就很方便。

 #include <bits/stdc++.h>

 using namespace std;

 const int maxn = , maxm = ;
const int dir[maxn][maxm] =
{
{-,-,-,-, , }, {-, ,-, , , }, { ,-, ,-, , }, {-, ,-, , , },
{ , , , , , }, { ,-, ,-, , }, {-, ,-, ,,}, { , , , ,,},
{ , , , ,,}, { ,-, ,-,,}, {-, ,-,,-,-}, { , ,,,-,-},
{ , ,,,-,-}, { , ,,,-,-}, { ,-,,-,-,-}
}; int s;
bool vis[ << maxn];
pair<int, int> path[ << maxn];
int pre[ << maxn]; struct Node {
int sit, time;
int pos;
Node(int sit = , int time = , int pos = ) :
sit(sit), time(time), pos(pos) {}
}; int bfs(int &p) {
int cnt = ;
int ori = ( << maxn) - ;
ori ^= ( << s);
queue<Node> que;
que.push(Node(ori, , ));
vis[ori] = true;
while (!que.empty()) {
Node first = que.front();
que.pop();
if (first.sit == ( << s)) {
p = first.pos;
return first.time;
} int ssit = first.sit;
for (int i = ; i < maxn; i++) {
if (!(ssit&( << i))) continue; for (int j = ; j < maxm; j++) {
int Next = dir[i][j];
if (Next == - || !(ssit&( << Next))) continue; int tmp = ssit ^ ( << i);
while (Next != -) {
if (!(ssit&( << Next))) {
//printf("%d %d\n",i, Next);
tmp ^= ( << Next);
if (!vis[tmp]) {
Node temp(tmp, first.time + , ++cnt);
pre[cnt] = first.pos;
path[cnt] = make_pair(i, Next);
que.push(temp);
vis[tmp] = true;
}
break;
}
tmp ^= ( << Next);
Next = dir[Next][j];
}
}
}
}
return -;
} void output(int pos) {
if (!pre[pos]) {
printf("%d %d", path[pos].first + , path[pos].second + );
return;
}
output(pre[pos]);
printf(" %d %d", path[pos].first + , path[pos].second + );
} int main()
{
int iCase;
scanf("%d", &iCase);
while (iCase--) {
scanf("%d", &s);
s--;
memset(vis, false, sizeof(vis));
memset(pre, -, sizeof(pre));
int pos;
int ans = bfs(pos);
if (ans == -) {
printf("IMPOSSIBLE\n");
}
else {
printf("%d\n", ans);
output(pos);
printf("\n");
}
}
return ;
}
上一篇:BZOJ 1192 鬼谷子的钱袋 数论


下一篇:进程隐藏与进程保护(SSDT Hook 实现)(一)