我对lmfit.minimize最小化程序包有问题.实际上,我无法为我的问题创建正确的目标函数.
问题定义
>我的函数:yn = a_11 * x1 ** 2 a_12 * x2 ** 2 … a_m * xn ** 2,其中xn-未知数,a_m-
系数. n = 1..N,m = 1..M
>就我而言,对于x1,..,x5,N = 5;对于y1,y2,y3,M = 3.
我需要找到最佳值:x1,x2,…,x5,以便可以满足y
我的问题:
>错误:ValueError:操作数不能与形状(3,)(3,5)一起广播.
>我是否在Python中正确创建了问题的目标函数?
我的代码:
import numpy as np
from lmfit import Parameters, minimize
def func(x,a):
return np.dot(a, x**2)
def residual(pars, a, y):
vals = pars.valuesdict()
x = vals['x']
model = func(x,a)
return y - model
def main():
# simple one: a(M,N) = a(3,5)
a = np.array([ [ 0, 0, 1, 1, 1 ],
[ 1, 0, 1, 0, 1 ],
[ 0, 1, 0, 1, 0 ] ])
# true values of x
x_true = np.array([10, 13, 5, 8, 40])
# data without noise
y = func(x_true,a)
#************************************
# Apriori x0
x0 = np.array([2, 3, 1, 4, 20])
fit_params = Parameters()
fit_params.add('x', value=x0)
out = minimize(residual, fit_params, args=(a, y))
print out
if __name__ == '__main__':
main()
解决方法:
下面的代码直接使用scipy.optimize.minimize()即可解决此问题.注意,随着点yn的增加,您将趋于获得与x_true相同的结果,否则将存在多个解决方案.您可以通过添加边界来最大限度地减少不良约束优化的影响(请参阅下面使用的bounds参数).
import numpy as np
from scipy.optimize import minimize
def residual(x, a, y):
s = ((y - a.dot(x**2))**2).sum()
return s
def main():
M = 3
N = 5
a = np.random.random((M, N))
x_true = np.array([10, 13, 5, 8, 40])
y = a.dot(x_true**2)
x0 = np.array([2, 3, 1, 4, 20])
bounds = [[0, None] for x in x0]
out = minimize(residual, x0=x0, args=(a, y), method='L-BFGS-B', bounds=bounds)
print(out.x)
如果M&== N,您还可以使用scipy.optimize.leastsq来完成此任务:
import numpy as np
from scipy.optimize import leastsq
def residual(x, a, y):
return y - a.dot(x**2)
def main():
M = 5
N = 5
a = np.random.random((M, N))
x_true = np.array([10, 13, 5, 8, 40])
y = a.dot(x_true**2)
x0 = np.array([2, 3, 1, 4, 20])
out = leastsq(residual, x0=x0, args=(a, y))
print(out[0])